• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Feature Matching Approaches for Registration of Remote Sensing Imageries at Various Times from Different Sources

Tseng, Jen-ping 22 October 2010 (has links)
Image Registration plays a very important role in the field of remote sensing. In order to have a better registration quality and make the automatization possible, choos ing and matching the control points from conjugate images become very important. In fact, the control points required for image registration should have following three key factors, that is, the amount, validity and distribution of control points. ¡@¡@In the study, we take QuickBird Satellite Images as the main ones; on the other hand, it conducts two groups of image registrations resulted from aerial images at various times. After detecting feature points using different algorithms, the study makes use of feature matching methods to get conjugate points between two overlapped images. The algorithms used above are SIFT, ASIFT and MESR. SIFT is an algorithm which invariant to scales, rotation, affine stretch and change in brightness. ASIFT undertakes simulations based on the theory of SIFT and thus carries out fully affine invariant. The feature points obtained from MSER have physical meaning in its location. By using feature matching algorithms like K-d tree and BBF, the matched feature points from two overlapped images would be turned into the conjugate points which can be control points for image registration. ¡@¡@During the process of image preprocessing, it is learned that the feature points detected by SIFT and MSER through feature matching are very few. Hence, this study attempts to employ histogram specification¡Bcontrast stretching and scale change methods to see if it is helpful to the feature detections and matching through change of image quality and image size. The experiment found that scale change will improve both the amount and accuracy of conjugate points detected by different algorithms. When considering distribution of the feature points, the study takes advantage of image cropping approach to conduct feature detections and matching individually. It is found that more conjugate points with uniform distribution can be obtained via image cropping technique.
2

Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista. / Viewpoint invariant template matching based in radial and circular proejction.

Pérez López, Guillermo Angel 23 November 2015 (has links)
Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. / This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift.
3

AFORAPRO: reconhecimento de objetos invariante sob transformações afins. / AFORAPRO: objects recognition under affine transformation invariant.

Guillermo Ángel Pérez López 25 March 2011 (has links)
Reconhecimento de objetos é uma aplicação básica da área de processamento de imagens e visão computacional. O procedimento comum do reconhecimento consiste em achar ocorrências de uma imagem modelo numa outra imagem a ser analisada. Consequentemente, se as imagens apresentarem mudanças no ponto de vista da câmera o algoritmo normalmente falha. A invariância a pontos de vista é uma qualidade que permite reconhecer um objeto, mesmo que este apresente distorções resultantes de uma transformação em perspectiva causada pela mudança do ponto de vista. Uma abordagem baseada na simulação de pontos de vista, chamada ASIFT, tem sido recentemente proposta no entorno desta problemática. O ASIFT é invariante a pontos de vista, no entanto falha na presença de padrões repetitivos e baixo contraste. O objetivo de nosso trabalho é utilizar uma variante da técnica de simulação de pontos de vista em combinação com a técnica de extração dos coeficientes de Fourier de projeções radiais e circulares (FORAPRO), para propor um algoritmo invariante a pontos de vista, e robusto a padrões repetitivos e baixo contraste. De maneira geral, a nossa proposta resume-se nas seguintes fases: (a) Distorcemos a imagem, variando os parâmetros de inclinação e rotação da câmera, para gerar alguns modelos e conseguir a invariância a deformações em perspectiva, (b) utilizamos cada como modelo a ser procurado na imagem, para escolher o que melhor case, (c) realizamos o casamento de padrões. As duas últimas fases do processo baseiam-se em características invariantes por rotação, escala, brilho e contraste extraídas pelos coeficientes de Fourier. Nossa proposta, que chamamos AFORAPRO, foi testada com 350 imagens que continham diversidade nos requerimentos, e demonstrou ser invariante a pontos de vista e ter ótimo desempenho na presença de padrões repetitivos e baixo contraste. / Object recognition is a basic application from the domain of image processing and computer vision. The common process recognition consists of finding occurrences of an image query in another image to be analyzed A. Consequently, if the images changes viewpoint in the camera it will normally result in the algorithm failure. The invariance viewpoints are qualities that permit recognition of an object, even if this present distortion resultant of a transformation of perspective is caused by the change in viewpoint. An approach based on viewpoint simulation, called ASIFT, has recently been proposed surrounding this issue. The ASIFT algorithm is invariant viewpoints; however there are flaws in the presence of repetitive patterns and low contrast. The objective of our work is to use a variant of this technique of viewpoint simulating, in combination with the technique of extraction of the Coefficients of Fourier Projections Radials and Circulars (FORAPRO), and to propose an algorithm of invariant viewpoints and robust repetitive patterns and low contrast. In general, our proposal summarizes the following stages: (a) We distort the image, varying the parameters of inclination and rotation of the camera, to produce some models and achieve perspective invariance deformation, (b) use as the model to be search in the image, to choose the that match best, (c) realize the template matching. The two last stages of process are based on invariant features by images rotation, scale, brightness and contrast extracted by Fourier coefficients. Our approach, that we call AFORAPRO, was tested with 350 images that contained diversity in applications, and demonstrated to have invariant viewpoints, and to have excellent performance in the presence of patterns repetitive and low contrast.
4

Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista. / Viewpoint invariant template matching based in radial and circular proejction.

Guillermo Angel Pérez López 23 November 2015 (has links)
Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. / This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift.
5

AFORAPRO: reconhecimento de objetos invariante sob transformações afins. / AFORAPRO: objects recognition under affine transformation invariant.

Pérez López, Guillermo Ángel 25 March 2011 (has links)
Reconhecimento de objetos é uma aplicação básica da área de processamento de imagens e visão computacional. O procedimento comum do reconhecimento consiste em achar ocorrências de uma imagem modelo numa outra imagem a ser analisada. Consequentemente, se as imagens apresentarem mudanças no ponto de vista da câmera o algoritmo normalmente falha. A invariância a pontos de vista é uma qualidade que permite reconhecer um objeto, mesmo que este apresente distorções resultantes de uma transformação em perspectiva causada pela mudança do ponto de vista. Uma abordagem baseada na simulação de pontos de vista, chamada ASIFT, tem sido recentemente proposta no entorno desta problemática. O ASIFT é invariante a pontos de vista, no entanto falha na presença de padrões repetitivos e baixo contraste. O objetivo de nosso trabalho é utilizar uma variante da técnica de simulação de pontos de vista em combinação com a técnica de extração dos coeficientes de Fourier de projeções radiais e circulares (FORAPRO), para propor um algoritmo invariante a pontos de vista, e robusto a padrões repetitivos e baixo contraste. De maneira geral, a nossa proposta resume-se nas seguintes fases: (a) Distorcemos a imagem, variando os parâmetros de inclinação e rotação da câmera, para gerar alguns modelos e conseguir a invariância a deformações em perspectiva, (b) utilizamos cada como modelo a ser procurado na imagem, para escolher o que melhor case, (c) realizamos o casamento de padrões. As duas últimas fases do processo baseiam-se em características invariantes por rotação, escala, brilho e contraste extraídas pelos coeficientes de Fourier. Nossa proposta, que chamamos AFORAPRO, foi testada com 350 imagens que continham diversidade nos requerimentos, e demonstrou ser invariante a pontos de vista e ter ótimo desempenho na presença de padrões repetitivos e baixo contraste. / Object recognition is a basic application from the domain of image processing and computer vision. The common process recognition consists of finding occurrences of an image query in another image to be analyzed A. Consequently, if the images changes viewpoint in the camera it will normally result in the algorithm failure. The invariance viewpoints are qualities that permit recognition of an object, even if this present distortion resultant of a transformation of perspective is caused by the change in viewpoint. An approach based on viewpoint simulation, called ASIFT, has recently been proposed surrounding this issue. The ASIFT algorithm is invariant viewpoints; however there are flaws in the presence of repetitive patterns and low contrast. The objective of our work is to use a variant of this technique of viewpoint simulating, in combination with the technique of extraction of the Coefficients of Fourier Projections Radials and Circulars (FORAPRO), and to propose an algorithm of invariant viewpoints and robust repetitive patterns and low contrast. In general, our proposal summarizes the following stages: (a) We distort the image, varying the parameters of inclination and rotation of the camera, to produce some models and achieve perspective invariance deformation, (b) use as the model to be search in the image, to choose the that match best, (c) realize the template matching. The two last stages of process are based on invariant features by images rotation, scale, brightness and contrast extracted by Fourier coefficients. Our approach, that we call AFORAPRO, was tested with 350 images that contained diversity in applications, and demonstrated to have invariant viewpoints, and to have excellent performance in the presence of patterns repetitive and low contrast.

Page generated in 0.3034 seconds