• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de Impacto do Polimorfismo Genético do Subtipo C do HIV-1 na Interação da Protease Viral com o Inibidor Nelfinavir por Modelagem e Dinâmica Molecular / Analyse the Impact of Genetic Polymorphism of subtype C of HIV-1 Protease Inhibitors in the Interaction Viral With the Inhibitor Nelfinavir by Modeling and Molecular Dynamics

Soares, Rosemberg de Oliveira 28 November 2008 (has links)
Made available in DSpace on 2015-03-04T18:51:06Z (GMT). No. of bitstreams: 1 Tese.pdf: 24640886 bytes, checksum: 4120e048629aa78cd493eb576212d8ca (MD5) Previous issue date: 2008-11-28 / The human immunodeficiency virus (HIV) can be divided into HIV-1 and HIV-2. The former can be divided into groups: M, N and O. Group M, which represents 90% of infections, is divided into several subtypes (A, B, C, D, F, G, H, J and K). It is known today that the most prevalent subtype in the world (and in Africa) is the subtype C, although the most studied is B (prevalent in the U.S. and Western Europe). Several stages the HIV-1 replicating cycle have been identified as a target for pharmacologic intervention. One of the main targets is the enzyme aspartyl protease (PR), which processes the viral polyproteins Gag and Gag-Pol. Its inhibition results in the formation of non-infectious virus particles. Currently 10 PR inhibitors are used in clinic. However, the emergence of resistance to these inhibitors leads to a therapeutic failure. Several mutated amino acid residues that are present in resistant isolates have been identified. One of such resistance mutations is the D30N, which confers primary resistance exclusively to nelfinavir, has been described in patients infected with subtype B. However, clinical and laboratory studies showed that virus of subtype C with the mutation D30N (CD30N) has low incidence in clinical and reduced adaptability in vitro. To try to understand these differences caused by mutation D30N in subtypes B and C, we studied the interaction of these PRs with the peptide KARVLAEAM (analogous to the natural substrate of cleavage between the protein the capsid (CA) and p2 of HIV-1) and with the inhibitor nelfinavir. We have also studied the PR CD30N with the compensatory mutations N83T or N88D, found in vitro and in vivo, respectively, which occur when the subtype C acquires the mutation D30N. This work aimed to study the molecular and atomic mechanisms of mutation D30N in the PR of subtypes B and C. The results showed that the inhibitor and backbone of models BD30N and CD30N/N83T possessed the greatest variation, with respect to the initial structure. Although the mutants CD30N and CD30N/N88T have not suffered similar variations, they showed, as well as the other two mutants, a reduction in the intensity of the h-bonds that occur between PR and inhibitor which are located near the catalytic and the flaps regions. Also, all mutants had reduced hydrophobic contacts between the receptor and the ligand. Some data indicated that the flap of one of the chains is highly immobile in a model CD30N suggesting the mutation D30N impairs the contact of flap with the substrate in subtype C. Also, the analysis of the PR structure interacting with the substrate, indicated that the CD30N mutant has one of its α-helix regions unstructured, which can be directly associated with substrate cleavage. Our work provides important insights in to the effect of D30N mutation in the PR structure of the subtype C, and on its interaction with the substrate and the inhibitor. These data confirm and explain, at least in part, the smaller incidence of the studied mutation in that genetic subtype of HIV-1. / O HIV pode ser dividido em HIV-1 e HIV-2. Aquele, por sua vez, pode ser divido nos grupos: M, N e O. O grupo M, que representa 90% das infecções, foi dividido em vários subtipos (A, B, C, D, F, G, H, J e K). Sabe-se hoje que o subtipo mais circulante no mundo (a maior parte na África) é o C, entretanto o mais estudado é o B (prevalente nos EUA e Europa). Diversas etapas do ciclo replicativo do HIV-1 têm sido identificadas como alvos para intervenção farmacológica. Um dos principais alvos é a enzima aspartil protease (PR); é ela que processa as poliproteínas virais Gag e Gag-Pol e sua inibição resulta na formação de partículas virais não infecciosas, sendo atualmente 10 inibidores utilizados em clínica. No entanto, o aparecimento de resistência a esses inibidores leva à falha terapêutica, tendo sido identificados e estudados vários resíduos que se apresentam mutados em isolados resistentes. Uma dessas mutações de resistência é a D30N, que consiste numa mutação primária de resistência exclusiva ao nelfinavir descrita em pacientes soropositivos infectados pelo subtipo B. Entretanto, observações clínicas e laboratoriais mostraram que vírus do subtipo C com a mutação D30N (CD30N) têm baixíssima ocorrência clínica e adaptabilidade reduzida in vitro. Para tentar entender as diferenças causadas pela mutação D30N nos subtipos B e C, foi estudada a interação da PR destes vírus com o peptídeo KARVLAEAM (análogo ao substrato natural de clivagem entre a proteína do capsídeo (CA) e a proteína p2 do HIV-1) e com o inibidor nelfinavir. Também foi estudada a PR CD30N com as mutações compensatórias N83T e N88D, encontradas in vitro e in vivo respectivamente, que se manifestam quando o subtipo C sofre a mutação D30N. Este trabalho teve como objetivo estudar os mecanismos moleculares e atômicos dos efeitos da mutação D30N na PR dos subtipos B e C. Os resultados mostram que o inibidor e o esqueleto peptídico dos modelos BD30N e CD30N/N83T sofreram as maiores variações, em relação à estrutura inicial. Embora os mutantes CD30N e CD30N/N88D não tenham sofrido variação semelhante, eles apresentaram, assim como os outros dois mutantes, uma redução na intensidade das ligações de hidrogênio que ocorrem entre a PR e o inibidor que estão localizadas próximas à região catalítica e aos flaps. Além disso, todos os mutantes apresentaram redução em seus contatos hidrofóbicos ocorridos na interação receptor/ligante. Alguns dados obtidos indicam que a alça de uma das cadeias é altamente imóvel no modelo CD30N sugerindo que a mutação D30N prejudica o contato do flap com o substrato no subtipo C. Além disso, a análise da estrutura das PRs, interagindo com o substrato, indicou que o mutante CD30N tem uma de suas regiões de α-hélice desestruturada, o que pode estar diretamente associado a não clivagem do substrato. O nosso trabalho provê importantes insights sobre o efeito da mutação D30N na estrutura da PR do subtipo C, bem como na sua interação com o substrato e com o inibidor. Tais dados corroboram e explicam, ao menos em parte, a menor ocorrência da mutação estudada naquele variante genético do HIV-1.
2

Analyse the Impact of Genetic Polymorphism of subtype C of HIV-1 Protease Inhibitors in the Interaction Viral With the Inhibitor Nelfinavir by Modeling and Molecular Dynamics / Análise de Impacto do Polimorfismo Genético do Subtipo C do HIV-1 na Interação da Protease Viral com o Inibidor Nelfinavir por Modelagem e Dinâmica Molecular

Rosemberg de Oliveira Soares 28 November 2008 (has links)
The human immunodeficiency virus (HIV) can be divided into HIV-1 and HIV-2. The former can be divided into groups: M, N and O. Group M, which represents 90% of infections, is divided into several subtypes (A, B, C, D, F, G, H, J and K). It is known today that the most prevalent subtype in the world (and in Africa) is the subtype C, although the most studied is B (prevalent in the U.S. and Western Europe). Several stages the HIV-1 replicating cycle have been identified as a target for pharmacologic intervention. One of the main targets is the enzyme aspartyl protease (PR), which processes the viral polyproteins Gag and Gag-Pol. Its inhibition results in the formation of non-infectious virus particles. Currently 10 PR inhibitors are used in clinic. However, the emergence of resistance to these inhibitors leads to a therapeutic failure. Several mutated amino acid residues that are present in resistant isolates have been identified. One of such resistance mutations is the D30N, which confers primary resistance exclusively to nelfinavir, has been described in patients infected with subtype B. However, clinical and laboratory studies showed that virus of subtype C with the mutation D30N (CD30N) has low incidence in clinical and reduced adaptability in vitro. To try to understand these differences caused by mutation D30N in subtypes B and C, we studied the interaction of these PRs with the peptide KARVLAEAM (analogous to the natural substrate of cleavage between the protein the capsid (CA) and p2 of HIV-1) and with the inhibitor nelfinavir. We have also studied the PR CD30N with the compensatory mutations N83T or N88D, found in vitro and in vivo, respectively, which occur when the subtype C acquires the mutation D30N. This work aimed to study the molecular and atomic mechanisms of mutation D30N in the PR of subtypes B and C. The results showed that the inhibitor and backbone of models BD30N and CD30N/N83T possessed the greatest variation, with respect to the initial structure. Although the mutants CD30N and CD30N/N88T have not suffered similar variations, they showed, as well as the other two mutants, a reduction in the intensity of the h-bonds that occur between PR and inhibitor which are located near the catalytic and the flaps regions. Also, all mutants had reduced hydrophobic contacts between the receptor and the ligand. Some data indicated that the flap of one of the chains is highly immobile in a model CD30N suggesting the mutation D30N impairs the contact of flap with the substrate in subtype C. Also, the analysis of the PR structure interacting with the substrate, indicated that the CD30N mutant has one of its α-helix regions unstructured, which can be directly associated with substrate cleavage. Our work provides important insights in to the effect of D30N mutation in the PR structure of the subtype C, and on its interaction with the substrate and the inhibitor. These data confirm and explain, at least in part, the smaller incidence of the studied mutation in that genetic subtype of HIV-1. / O HIV pode ser dividido em HIV-1 e HIV-2. Aquele, por sua vez, pode ser divido nos grupos: M, N e O. O grupo M, que representa 90% das infecções, foi dividido em vários subtipos (A, B, C, D, F, G, H, J e K). Sabe-se hoje que o subtipo mais circulante no mundo (a maior parte na África) é o C, entretanto o mais estudado é o B (prevalente nos EUA e Europa). Diversas etapas do ciclo replicativo do HIV-1 têm sido identificadas como alvos para intervenção farmacológica. Um dos principais alvos é a enzima aspartil protease (PR); é ela que processa as poliproteínas virais Gag e Gag-Pol e sua inibição resulta na formação de partículas virais não infecciosas, sendo atualmente 10 inibidores utilizados em clínica. No entanto, o aparecimento de resistência a esses inibidores leva à falha terapêutica, tendo sido identificados e estudados vários resíduos que se apresentam mutados em isolados resistentes. Uma dessas mutações de resistência é a D30N, que consiste numa mutação primária de resistência exclusiva ao nelfinavir descrita em pacientes soropositivos infectados pelo subtipo B. Entretanto, observações clínicas e laboratoriais mostraram que vírus do subtipo C com a mutação D30N (CD30N) têm baixíssima ocorrência clínica e adaptabilidade reduzida in vitro. Para tentar entender as diferenças causadas pela mutação D30N nos subtipos B e C, foi estudada a interação da PR destes vírus com o peptídeo KARVLAEAM (análogo ao substrato natural de clivagem entre a proteína do capsídeo (CA) e a proteína p2 do HIV-1) e com o inibidor nelfinavir. Também foi estudada a PR CD30N com as mutações compensatórias N83T e N88D, encontradas in vitro e in vivo respectivamente, que se manifestam quando o subtipo C sofre a mutação D30N. Este trabalho teve como objetivo estudar os mecanismos moleculares e atômicos dos efeitos da mutação D30N na PR dos subtipos B e C. Os resultados mostram que o inibidor e o esqueleto peptídico dos modelos BD30N e CD30N/N83T sofreram as maiores variações, em relação à estrutura inicial. Embora os mutantes CD30N e CD30N/N88D não tenham sofrido variação semelhante, eles apresentaram, assim como os outros dois mutantes, uma redução na intensidade das ligações de hidrogênio que ocorrem entre a PR e o inibidor que estão localizadas próximas à região catalítica e aos flaps. Além disso, todos os mutantes apresentaram redução em seus contatos hidrofóbicos ocorridos na interação receptor/ligante. Alguns dados obtidos indicam que a alça de uma das cadeias é altamente imóvel no modelo CD30N sugerindo que a mutação D30N prejudica o contato do flap com o substrato no subtipo C. Além disso, a análise da estrutura das PRs, interagindo com o substrato, indicou que o mutante CD30N tem uma de suas regiões de α-hélice desestruturada, o que pode estar diretamente associado a não clivagem do substrato. O nosso trabalho provê importantes insights sobre o efeito da mutação D30N na estrutura da PR do subtipo C, bem como na sua interação com o substrato e com o inibidor. Tais dados corroboram e explicam, ao menos em parte, a menor ocorrência da mutação estudada naquele variante genético do HIV-1.
3

Towards the Development of Synergistic Inhibitors that Exploit the Replication Strategy of HIV-1

Pattenden, Leonard Keith January 2005 (has links)
HIV-1 has evolved with a great deal of functional complexity contained within a very small genome by encoding small, but critical viral proteins within larger viral genes and dividing the replication cycle into early and late phases to differentially produce all proteins leading to efficient replication and virion release. Early replication is restricted by the host spliceosome that processes HIV-1 vRNA transcripts so only the small intragenomic proteins are produced, one of which is Rev (Regulator of Virion Expression). Rev in turn governs the transition from early to late replication by interacting with a highly structured region of vRNA termed the Rev Response Element (RRE). The binding of Rev to the RRE is believed to cause a change in the vRNA tertiary structure and inhibition of splicing of the vRNA. Once, a Rev:RRE complex is formed, a nuclear export signal within Rev facilitates the export of partially spliced and unspliced vRNA to the cytoplasm. During late replication the partially spliced and unspliced vRNA is translated to polyproteins and is packaged into a budding virion where the viral aspartyl protease (HIV-1 PR) autocatalytically excises itself from the larger polyprotein and processes the remaining polyproteins to release all viral structural and functional proteins to form a mature and infectious virion. Since the vRNA salvaged by Rev is translated to the polyproteins containing HIV-1 PR, the inhibition of Rev function will reduce the amount of HIV-1 PR available and thereby reduce the amount of HIV-1 PR therapeutics required to elicit a clinical effect. Therfore a combination approach to HIV-1 treatment using suitably developed therapeutics that inhibit Rev and HIV-1 PR function represents an attractive synergistic approach to treating HIV-1 infection in vivo. The work of this thesis was divided into two parts, the first part was concerned with HIV-1 PR structural biology and addressing problems encountered with inhibitor design. A bicyclic peptide (based on inhibitors of analogous structure) was co-crystallised with active HIV-1 PR to develop an enzyme-product (E-P) complex and with a catalytically inactive mutant HIV-1 PR to provide an analogy to the enzyme-substrate (E-S) complex. Both structures of the E-P and E-S complexes were solved to 1.6Å resolution and were compared to a hydroxyethylamine isostere enzyme-inhibitor complex (E-I), highlighting the similarity of binding mode for all ligands. The inhibitor in the E-I complex was translated towards the S1 - S3 pockets of the substrate binding cleft relative to the substrate in the E-S complex due to the increased length of the hydroxylethylamine isostere compared to the peptide backbone, although the inhibitor "puckered" the isostere linkage and maintains a binding mode similar to the substrate with very little overall differences in the position of the ligands and surrounding protein. The similarity of the E-S, E-I and E-P complexes was attributed to the macrocyclic ligands ordering the surrounding protein environment, especially the protein -strand "flap" structures that form a roof over the ligands in the active site but were not found to close more tightly in any of the trapped catalytic states. The new structures allowed refinement of details of the mechanism of peptide hydrolysis. The mechanism relies on the optimal nucleophilic attack of a water molecule on the scissile amide bond with concerted acid-base catalysis of the active site aspartyl residues intitiated by D125. The alignment and intrinsic position of the N-terminus of the bicyclic substrate was interpreted as being critical to facilitate efficient electron transfer with the bicyclic substrate. An N-terminal cyclic inhibitor, similar to the N-terminal portion of the bicyclic substrate, was used to address a major problem in HIV-1 PR drug design termed "cooperativity," where the sequential optimisation of an inhibitor (or substrate) to individual pockets of the substrate binding cleft, can negatively impact on adjacent and downfield subsites and thereby alter the binding mode of the "optimised" inhibitor. The technique referred to here as "templating" uses the N-terminal cycle to lock the binding mode into a known conformation, probing the S1' and S2' pockets. The structure activity relationship suggested that by viewing the S1' - S3' pockets as a single trough, bulky aromatic groups attached to an N-alkyl sulfonamide could be directed along the line of the trough without adverse interactions with the tops of the S1' and S3' pockets, providing very potent inhibitors. It was also found that specificity and potency of an inhibitor can be maintained with smaller functionalities that carry their bulk low and close to the inhibitor backbone in the S2' pocket, making the P2 functionalities more substrate-like. The second part of the thesis was concerned with establishing suitable surface plasmon resonance assays for testing potential inhibitors of Rev function. Recombinant Rev and its minimal RNA aptamer target (stem loop II of the RRE termed RBE3), were expressed, purified, and used to develop BIAcore-based assays and test potential inhibitors of their interaction. The system was applied to screening of aminoglycoside antibiotics and other small molecules in a competitive assay, and also to quantitative assay of Neomycin and moderate sized analytes: Rev and three peptidic analogues of the high-affinity binding site of Rev - the native peptide, succinylated form of the peptide and a form incorporating a novel helix-inducing cap. The peptide and protein assay was undertaken to test the proposition that helix induction of the high-affinity binding site of Rev can increase affinity for the biologically important RNA target and thereby form the basis of a new class of inhibitors. The screen of small molecule antagonists found that Neomycin was the best inhibitor of the Rev:RBE3 interaction and that efficacy of other aminoglycosides was due to the neamine-base structure presenting charge to bind to the RNA and blocking interaction with Rev. The quantitative assay was optimised to reduce non-specific interactions of Rev protein to allow reliable studies of the analytes with RBE3 by the sytematic testing of buffers and modifiers. It was found that mutliple analytes bound to the RBE3 aptamer and a comparison of the KD values found that the native and capped peptides had similar affinity for RBE3 RNA (native slightly greater at 21 ± 7nM cf capped 41 ± 10nM) that was greater than the Rev protein (101 ± 19nM), however the succinylated peptide exhibited stronger binding with a KD ≤8nM and Neomycin had the lowest affinity (KD 13 ± 3M). The similarity of the native and capped peptides may be due to the high concentration of salt in the assay buffers and was necessary for the stability of the Rev protein, but is sufficient to influence secondary structure of the peptides. Therefore, it could not be stated that the helix-inducing cap increased the affinity of the native peptide for the biologically important therapeutic target. The work conducted in this thesis firmly establishes foundations for the continued development of inhibitors against both Rev and HIV-1 PR that play key roles in the HIV-1 replication strategy. It is envisaged this work could lead to a novel synergistic therapeutic approach to treating HIV-1 infection.

Page generated in 0.0528 seconds