• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 48
  • 11
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 136
  • 67
  • 34
  • 33
  • 30
  • 28
  • 25
  • 19
  • 18
  • 17
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigation of Methods for Testing Aspect Oriented Software

Banik, Kallol January 2014 (has links)
Aspect-oriented programming is a comparatively new programming paradigm which intends to overcome some limitations that approaches such as procedural programming and object-oriented programming have. Traditional approaches are unable to properly capture some design decisions. Aspect-oriented programming introduces some new properties that we don’t find in the structural programming or object-oriented programming. New design patterns of aspect-oriented software introduce new fault types and new challenges for testing. Testing is an important part in the software development to produce quality software. Research on testing aspect-oriented software has been going on for several years but it still remains to invent testing approaches that cover all features of aspect-oriented software. This dissertation surveys test methods for aspect-oriented software and presents a comparison among the testing methods which reveals the strengths and weaknesses of current methods for testing of aspect-oriented software. This comparative overview of proposed test methods can be helpful for testers who intend to test aspect-oriented software. The conclusion presents the research contribution of this dissertation and proposes future work.
62

Presentation techniques for more expressive programs

Eisenberg, Andrew David 11 1900 (has links)
We introduce a class of program editors that present a program using a rich set of transformations; we call these kinds of editors composable presentation editors. Proper use of these kinds of editors appears to lead to more expressive programs-programs whose structure are aligned with the problem they are trying to solve. By default, the composable presentation editor presents program elements textually as concrete syntax and enables typical editor commands on the program. Metadata on program elements control how the transformations are applied. Customized metadata can re-order, pictorialize, collapse, duplicate, or expand the displayed form of program elements and can additionally alter the available editor commands. We have developed a set of presentation techniques to be used by presentation designers (i.e., the programmers who design how a program is presented in the editor. These techniques relate to well-understood programming language design, editor design, and programming best-practices techniques including scoping, higher order functions, refactoring, prettyprinting, naming conventions, syntax highlighting, and text hovers. We introduce two implementations of composable presentation editors and a number of examples showing how programs can be made more expressive when presentation techniques are properly used. The first implementation is the ETMOP, an open editor, where a metaobject protocol is provided that allows language and editor designers to customize the way program elements are displayed. These customizations are called presenta- tion extensions and the corresponding presentation extension protocol acts in a way similar to the way that syntax macros extend the syntax of a language. The second implementation is Embedded CAL, a closed editor that uses these presentation techniques to embed one language (CAL) inside a host language (Java) through the use of presentation techniques, without changing the syntax or compiler of either language. / Science, Faculty of / Computer Science, Department of / Graduate
63

An aspect-oriented approach towards enhancing optimistic access control with usage control

Padayachee, Keshnee 26 July 2010 (has links)
With the advent of agile programming, lightweight software processes are being favoured over the highly formalised approaches of the 80s and 90s, where the emphasis is on "people, not processes". Likewise, access control may benefit from a less prescriptive approach and an increasing reliance on users to behave ethically. These ideals correlate with optimistic access controls. However, such controls alone may not be adequate as they are retrospective rather proactive. Optimistic access controls may benefit from the stricter enforcement offered by usage control. The latter enables finer-grained control over the usage of digital objects than do traditional access control policies and models, as trust management concerns are also taken into consideration. This thesis investigates the possibility of enhancing optimistic access controls with usage control to ensure that users conduct themselves in a trustworthy manner. Since this kind of approach towards access control has limited applicability, the present study investigates contextualising this approach within a mixed-initiative access control framework. A mixed-initiative access control framework involves combining a minimum of two access control models where the request to information is mediated by a mixture of access policy enforcement agents. In order for this type of integration to be successful, a software development approach was considered that allows for the seamless augmentation of traditional access control with optimistic access control enhanced with usage control, namely the aspect-oriented approach. The aspect-oriented paradigm can facilitate the implementation of additional security features to legacy systems without modifying existing code. This study therefore evaluates the aspect-oriented approach in terms of implementing security concerns. It is evidently difficult to implement access control and in dynamic environments preconfigured access control policies may often change dramatically, depending on the context. In unpredicted circumstances, users who are denied access could often have prevented a catastrophe had they been allowed access. The costs of implementing and maintaining complex preconfigured access control policies sometimes far outweigh the benefits. Optimistic controls are retrospective and allow users to exceed their normal privileges. However, if a user accesses information unethically, the consequences could be disastrous. Therefore it is proposed that optimistic access control be enhanced with some form of usage control, which may prevent the user from engaging in risky behaviour. An initiative towards including security in the earlier phases of the software life cycle is gaining momentum, as it is much easier to design with security from the onset than to use the penetrate-and-patch approach. Unfortunately, incorporating security into software development takes time and developers tend to focus more on the features of the software application. The aspect-oriented paradigm can facilitate the implementation of additional security features in legacy systems without modifying existing code. The current study evaluates the aspect-oriented approach towards enhancing optimistic access control with usage control. The efficacy of the aspect-oriented paradigm has been well established within several areas of software security, as aspect-orientation facilitates the abstraction of these security-related tasks so as to reduce code complexity. / Thesis (PHD)--University of Pretoria, 2010. / Computer Science / unrestricted
64

Geração de aplicações para linhas de produtos orientadas a aspectos com apoio da ferramenta Captor-AO / Application generation for aspect oriented product lines with Captor-AO tool

Carlos Alberto de Freitas Pereira Junior 19 November 2008 (has links)
Uma Linha de Produtos de Software (LPS) consiste de um conjunto de sistemas de software que compartilham características comuns e satisfazem às necessidades específicas de um segmento particular. Para tornar o processo de instanciação de produtos mais rápido e menos suscetível a erros, o projeto de uma LPS pode adotar a utilização de geradores de aplicação, que podem gerar os artefatos da LPS utilizando uma especificação das variabilidades de um certo produto. Adicionalmente, notase que determinadas características transversais de uma linha de produtos têm potencial de reúso em diferentes domínios, podendo ser implementadas usando a programação orientada a aspectos (POA). Neste trabalho é proposto um processo para o desenvolvimento de LPS e geração automatizada de produtos levando em consideração os interesses transversais existentes em cada domínio de aplicação. Os interesses transversais são as características comuns espalhadas pelas divisões ou módulos do programa de diferentes domínios. O processo aqui proposto tem a finalidade de aumentar o reúso de características de linhas de produtos por meio da POA, permitindo que as LPSs sejam projetadas de forma mais coesa e, consequentemente, facilitando sua manutenção e evolução. Visando diminuir o esforço necessário para a instanciação dos produtos provenientes dessas linhas de produtos, neste trabalho também é apresentada uma extensão do gerador Captor, denominada Captor-AO. Esse gerador fornece suporte ao processo proposto, permitindo a criação de produtos formados por características de diferentes domínios. Por fim, é apresentado um estudo de caso em que é realizada a configuração de um domínio transversal para o interesse de persistência, a definição de um domínio-base compatível com esse domínio transversal e a geração de produtos formados pelas características de ambos os domínios utilizando o gerador estendido Captor-AO / A Software Product Line (SPL) consists of a set of software systems that share common features and fulfill the specific requirements of a particular domain. In order to make the products instantiation process faster and less prone to errors, the project of a SPL can adopt the utilization of application generators, which can can automatically generate the SPL artifacts based on the specification of the variabilities of a particular product. Additionally, it can be noticed that certain crosscutting features of a product line have potencial to be reused in different domains, so they can be implemented using aspect oriented programming (AOP). In this work, a process is proposed for the development of SPLs and automatic generation of products, considering the crosscutting concerns present in each application domain. The crosscutting concerns are related to the common features that are scattered around program divisions or modules of different domains. The process proposed here has the goal of enhancing the reuse of SPL features using AOP, allowing the design of SPL in a more cohesive way and, thus, easing its maintenance and evolution. Aiming at decreasing the effort needed to instantiate products from these SPL, this work also presents an extension to the Captor application generator, named Captor-AO. This generator supports the proposed process, allowing the creation of products composed by features of different domains. Finally, a case study is presented in which Captor-AO is configured with two domains: a crosscutting domain for the persistence concern and a base domain compatible with this crosscutting domain, such that the generation of products can be done by composing features of both domains
65

Uma contribuição para a minimização do número de stubs no teste de integração de programas orientados a aspectos / A contribution to the minimization of the number of stubs during integration test of aspect-oriented programs

Reginaldo Ré 31 March 2009 (has links)
A programação orientada a aspectos é uma abordagem que utiliza conceitos da separação de interesses para modularizar o software de maneira mais adequada. Com o surgimento dessa abordagem vieram também novos desafios, dentre eles o teste de programas orientados a aspectos. Duas estratégias de ordenação de classes e aspectos para apoiar o teste de integração orientado a aspectos são propostas nesta tese. As estratégias de ordenação tem o objetivo de diminuir o custo da atividade de teste por meio da diminuição do número de stubs implementados durante o teste de integração. As estratégias utilizam um modelo de dependências aspectuais e um modelo que descreve dependências entre classes e aspectos denominado AORD (Aspect and Oriented Relation Diagram) também propostos neste trabalho. Tanto o modelo de dependências aspectuais como o AORD foram elaborados a partir da sintaxe e semântica da linguagem AspectJ. Para apoiar as estratégias de ordenação, idealmente aplicadas durante a fase de projeto, um processo de mapeamento de modelos de projeto que usam as notações UML e MATA para o AORD é proposto neste trabalho. O processo de mapeamento é composto de regras que mostram como mapear dependências advindas da programação orientada a objetos e também da programação orientada a aspectos. Como uma forma de validação das estratégias de ordenação, do modelo de dependências aspectuais e do AORD, um estudo exploratório de caracterização com três sistemas implementados em AspectJ foi conduzido. Durante o estudo foram coletadas amostras de casos de implementação de stubs e drivers de teste. Os casos de implementação foram analisados e classificados. A partir dessa análise e classificação, um catálogo de stubs e drivers de teste é apresentado / Aspect-oriented programming is an approach that uses principles of separation of concerns to improve the sofware modularization. Testing of aspect-oriented programs is a new challenge related to this approach. Two aspects and classes test order strategies to support integration testing of aspect-oriented programs are proposed in this thesis. The objective of these strategies is to reduce the cost of testing activities through the minimization of the number of implemented stubs during integration test. An aspectual dependency model and a diagram which describes dependencies among classes and aspects called AORD (Aspect and Object Relation Diagram) used by the ordering strategies are also proposed. The aspectual dependency model and the AORD were defined considering the syntax constructions and the semantics of AspectJ. As the proposed estrategies should be applied in design phase of software development, a process to map a desing model using UML and MATA notations into a AORD is proposed in order to support the ordering strategies. The mapping process is composed by rules that show how to map both aspect and object-oriented dependencies. A characterization exploratory study using three systems implemented with AspectJ was conducted to validate the ordering strategies, the aspectual dependency model and the AORD. Interesting samples of stubs implementations were collected during the study conduction. The stubs were analyzed and classified. Based on these analysis and classification a catalog of stubs and drivers is presented
66

Autonomic test case generation of failing code using AOP

Murguia, Giovanni 02 September 2020 (has links)
As software systems have grown in size and complexity, the costs of maintaining such systems increases steadily. In the early 2000's, IBM launched the autonomic computing initiative to mitigate this problem by injecting feedback control mechanisms into software systems to enable them to observe their health and self-heal without human intervention and thereby cope with certain changes in their requirements and environments. Self-healing is one of several fundamental challenges addressed and includes software systems that are able to recover from failure conditions. There has been considerable research on software architectures with feedback loops that allow a multi-component system to adjust certain parameters automatically in response to changes in its environment. However, modifying the components' source code in response to failures remains an open and formidable challenge. Automatic program repair techniques aim to create and apply source code patches autonomously. These techniques have evolved over the years to take advantage of advancements in programming languages, such as reflection. However, these techniques require mechanisms to evaluate if a candidate patch solves the failure condition. Some rely on test cases that capture the context under which the program failed---the patch applied can then be considered as a successful patch if the test result changes from failing to passing. Although test cases are an effective mechanism to govern the applicability of potential patches, the automatic generation of test cases for a given scenario has not received much attention. ReCrash represents the only known implementation to generate test cases automatically with promising results through the use of low-level instrumentation libraries. The work reported in this thesis aims to explore this area further and under a different light. It proposes the use of Aspect-Oriented Programming (AOP)---and in particular of AspectJ---as a higher-level paradigm to express the code elements on which monitoring actions can be interleaved with the source code, to create a representation of the context at the most relevant moments of the execution, so that if the code fails, the contextual representation is retained and used at a later time to automatically write a test case. By doing this, the author intends to contribute to fill the gap that prevents the use of automatic program repair techniques in a self-healing architecture. The prototype implementation engineered as part of this research was evaluated along three dimensions: memory usage, execution time and binary size. The evaluation results suggest that (1) AspectJ introduces significant overhead with respect to execution time, (2) the implementation algorithm causes a tremendous strain on garbage collection, and (3) AspectJ incorporates tens of additional lines of code, which account for a mean size increase to every binary file of a factor of ten compared to the original size. The comparative analysis with ReCrash shows that the algorithm and data structures developed in this thesis produce more thorough test cases than ReCrash. Most notably, the solution presented here mitigates ReCrash's current inability to reproduce environment-specific failure conditions derived from on-demand instantiation. This work can potentially be extended to apply in less-intrusive frameworks that operate at the same level as AOP to address the shortcomings identified in this analysis. / Graduate
67

Deployment and Security Supervision for multi-cloud architectures / Déploiement et supervision de la sécurité pour architectures multi-cloud

Palesandro, Alex 09 November 2018 (has links)
Le Cloud Computing représente une des plus importantes avancées numériques de ces dix dernières années. Le modèle de service offert par le cloud computing est basé sur une allocation élastique et à la demande des ressources et une facturation au plus juste de leur utilisation. Plusieurs catégories d’application sont en train de migrer vers le cloud (par exemple : les NFV et les applications du Big Data). D’autres domaines applicatifs, soumis à une législation plus stricte, sont plus frileux. Leurs exigences sont souvent liées à des problématiques de sécurité et/ou à la non satisfaction par les ressources proposées par un cloud unique, peuvent trouver des réponses dans l’utilisation conjointe de plusieurs fournisseurs de cloud computing (CSPs). L’exploitation simultanée, flexible, efficace et simplifiée de plusieurs clouds requiert des propriétés qui assurent sa viabilité et son acceptation tout d’abord par les fournisseurs de clouds qui proposent des offres hétérogènes et non interopérables et qui souvent pour des raisons commerciales, ne sont pas disposés à coopérer pour faciliter le multi-cloud « à la carte » ; mais aussi du point de vue du consommateur de services cloud dont les contraintes sont le temps de mise en service et le besoin d’exprimer les besoins en services et leur configuration de manière simple et transparente et de permettre la définition de configurations de déploiement adaptées aux besoins de chaque consommateur, comparables à celles offertes par les clouds privés et optimisées pour tirer profit des spécificités de chaque fournisseur de cloud. Dans cette thèse, nous proposons un framework permettant d’exprimer indépendamment de toute solution sous-jacente les besoins en services et en fournisseurs de cloud et de générer efficacement des infrastructures de déploiement extensibles, adaptatives et contrôlables par le consommateur. Cette solution est composée de MANTUS, un outil permettant l’expression des besoins et la génération automatique d’instances, d’ORBITS, des infrastructures de déploiement multi-cloud adaptables dynamiquement grâce aux mécanismes autonomiques offerts par MANTUS.La solution proposée se décline en plusieurs contributions : tout d’abord l’extension d’un framework IaC (Infrastructure as a Code) existant, dédié à la construction de solutions multi-cloud par des mécanismes de tissage, caractéristiques de la programmation par aspects (AOP), permettant ainsi d’injecter et d’extraire des ressources à la demande. Cette extension, expérimentée sur le framework TOSCA a nécessité la proposition du langage TML (Tosca Manipulation Language) permettant de formaliser et de manipuler ces extensions. Les expérimentations effectuées montrent une surcharge acceptable induite par le mécanisme de tissage. La seconde contribution a été de doter le framework IaC TOSCA d’un outil d’expression des besoins et d’un algorithme de matching en terme, d’une part, de nombre et de caractéristiques de fournisseur de cloud -notamment la localisation- et d’autre part en terme de caractéristiques des services proposés par ceux-ci, permettant de trouver la configuration multi-cloud la plus adaptée. La troisième contribution est la définition d’une architecture « template » multi-couche, ORBITS, offrant des mécanismes d’interopérabilité inter-cloud et une vision haut niveau indépendante des clouds sous jacents. Enfin la dernière contribution proposée est la pile de virtualisation U-cloud et les protocoles liée à son déploiement qui permettent de délimiter les zones contrôlables par le consommateur des zones contrôlées par le provider. Cette proposition est basée sur l’utilisation conjointe de la virtualisation imbriquée (Nested Virtualization) et des micro-hyperviseurs réduisant la zone d’attaque (TCB). / Cloud Computing represents one of the most important changes in information and communications technology (ICT) of the latest ten years. However, after a decade since its commercial debut, there are still several applications that cloud computing is not able to fully serve. These are the applications that, due to their particularly stringent requirements, must rely simultaneously on multiple Cloud Service Providers (CSPs), rather than only one. Multiple CSPs can in fact offer a better availability, improve QoS, and break the business dependence w.r.t. a single CSP. A cloud infrastructure based on multiple CSPs is called multi-cloud.Despite the benefits of multi-clouds, organisations (i.e developers and operators of IT services) seldom accept the challenge of building applications and crossing multiple CSP domains. In fact, multi-CSP architectures come at the cost of more complex applications and the logic to in terms of architecture and performance optimization.Recently, Multi-cloud client-oriented architectures emerged as important approach to construct multi-cloud applications. It provides cloud consumers a mechanism to allocate resources over multiple CSPs without requiring any cooperation among the CSPs themselves.In particular, Infrastructure as Code-based (IaC-based) represent the reference paradigm when building multi-cloud applications.However, the adoption of IaC in the multi-cloud context us limited by the fact that the cloud consumer cannot easily reuse the infrastructure code across different applications. This is due to two major problems, which we investigate in this manuscript.First, infrastructure are composed of functional (e.g. resources for applications) and non-functional services (e.g. monitoring). Non-functional related code should be shared at most across different applications and cloud consumers. However, this separation between functional and non-functional code is often blurred and, therefore, non-functional code is hard to be shared across them. This enables the possibility of code re-using across different cloud consumers (e.g., their different multi-cloud infrastructures) and static analysis of infrastructure templates. Furthermore, we present a TML (TOSCA Manipulation Language) aspect specification language to dynamically inject “non-functional” services to the virtual multi-cloud infrastructure. Secondly, the multi-cloud paradigm is limited by the “least common denominator” barrier. The cloud consumer can hardly obtain an optimized usage of resources and services through existing IaC frameworks. Despite compatible with different CSPs, those frameworks do not specialize the output according to deployment context.To tackle the “under-specialization” of multi-cloud templates, we introduce a “context-based matching” scheduling algorithm to select the most compelling set of CSPs according to the cloud consumer needs.To validate such contributions, we defined an end-to-end workflow to optimize a multi-cloud infrastructure definition. More precisely, in our model, the cloud consumer initially models the IaC code as an high-level graph of services, leveraging the combination of TML and context-based matching adoption. The output of this workflow is the instantation of such optimized and fully-featured multi-cloud on most suitable CSPs. We implemented Mantus, a multi-cloud compiler, which encapsulates this workflow and we benchmarked this implementation according to different perspectives as scalability and performance.
68

Specification and runtime monitoring of object-oriented systems

Tyler, Benjamin James 14 July 2006 (has links)
No description available.
69

An Extensible Framework for Annotation-based Parameter Passing in Distributed Object Systems

Gopal, Sriram 28 July 2008 (has links)
Modern distributed object systems pass remote parameters based on their runtime type. This design choice limits the expressiveness, readability, and maintainability of distributed applications. While a rich body of research is concerned with middleware extensibility, modern distributed object systems do not offer programming facilities to extend their remote parameter passing semantics. Thus, extending these semantics requires understanding and modifying the underlying middleware implementation. This thesis addresses these design shortcomings by presenting (i) a declarative and extensible approach to remote parameter passing that decouples parameter passing from parameter types, and (ii) a plugin-based framework, DeXteR, that enables the programmer to extend the native set of remote parameter passing semantics, without having to understand or modify the underlying middleware implementation. DeXteR treats remote parameter passing as a distributed cross-cutting concern. It uses generative and aspect-oriented techniques, enabling the implementation of different parameter passing semantics as reusable application-level plugins that work with application, system, and third-party library classes. The flexibility and expressiveness of the framework is validated by implementing several non-trivial parameter passing semantics as DeXteR plugins. The material presented in this thesis has been accepted for publication at the ACM/USENIX Middleware 2008 conference. / Master of Science
70

An Investigation of Modular Dependencies in Aspects, Features and Classes

Yang, Shoushen 29 May 2007 (has links)
"The essence of software design is to construct well-defined, encapsulated modules that are composed together to build the desired software application. There are several design paradigms in use today, including traditional Object-Oriented Programming (OOP), Feature-Oriented Programming (FOP), Aspect-Oriented Programming (AOP) and Instance-Oriented Programming (IOP). FOP studies the modularity of features in product lines, where a feature is an increment in program functionality. AOP aims to separate and modularize aspects when an aspect is a crosscutting concern. IOP, as an extension to FOP, makes the layers work like object factories. While each is good at solving different types of problems, they are closely related. The composition of modules is complicated because modules have (often hidden) dependencies on other modules. This thesis aims to better understand the way dependencies are managed by each approach. Based on this, we focus on the precedence issue in AOP and FOP, that is, how designers are able to specify the order by which modules are composed together. Different precedence means different semantics, but the current tools can not guarantee the correct precedence is adopted. We first solve the precedence issue separately for AOP and FOP, then based on this, we come up with a unified model to solve the precedence issue by using source code annotations to specify the precedence. We evaluate our technique with use cases. "

Page generated in 0.7877 seconds