• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 28
  • 16
  • 13
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 160
  • 160
  • 70
  • 27
  • 24
  • 19
  • 15
  • 15
  • 14
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Engineering Properties, Hydration Kinetics, and Carbon Capture in Sustainable Construction Materials

Tran, Thien Quoc 20 December 2023 (has links)
Concrete, the second most consumed material on earth after water, is a source of environmental problems due to global urbanization. The production of this construction material requires a large amount of natural resources, and portland cement (PC) is responsible for around 8 % of planet-warming CO2 emissions. Producing 1 ton of PC will release roughly 1 ton of CO2 into the atmosphere. In 2021, around 92 million metric tons of PC were produced in the U.S., and a total of 4.4 billion tons were manufactured worldwide. While there was a yearly increase of around 1.5 % in the direct CO2 intensity of cement production from 2015 to 2021, urgent annual declines of 3 % until 2030 are necessary to be in line with the Net Zero Emissions by 2050 Scenario. This dissertation presents different approaches and technologies to offset the CO2 footprint of the production of cement clinker, concrete, and cementitious materials in general. First, this dissertation investigated the possibility of using end-of-life tire (ELT) rubber powder and its zinc-recovered residual (treated ELT rubber) to partially replace fine aggregates of different construction and infrastructure materials including stabilized soft soil (0 %, 10 %, 30 %, and 50 % ELT rubber added by clay volume), portland cement concrete (0 %, 10 %, 20 %, and 30 % ELT rubber added by sand volume), and asphalt concrete (20 % ELT rubber added by sand volume). This work was discussed through aspects of engineering properties and environmental impacts. The results reveal that the ELT rubber had both negative and positive effects on the engineering properties of the three materials while this waste posed a huge leachability of zinc and total organic carbon (TOC) content when being subjected to aqueous environments. However, the findings indicate that all three materials' matrices could effectively immobilize most leachable zinc from the ELT rubber by more than 90 %. Meanwhile, only stabilized soft soil and asphalt concrete could effectively deal with leachable TOC content from ELT rubber, and portland cement concrete needed the addition of silica fume to reduce TOC concentration in its leachate. Second, while previous studies have shown that steel furnace slag (SFS) can stabilize clay soils, the evidence is not clear if the stabilization mechanism is chemical and/or mechanical. This dissertation used isothermal calorimetry (IC) to quantify the heat of hydration of the mixture to assess the chemical aspects of the stabilization. Specifically, kaolin and bentonite clays were each blended with 40 % SFS by mass at water-to-binder ratios ranging from 1.0 to 1.5. The hydration properties of stabilized mixtures using lime or PC were also tested for comparison at the same experimental conditions. The obtained thermal power and total heat curves of stabilized mixtures confirmed that, for the specific SFS in this study, there is a hydration process taking place in clay stabilized by SFS. Relative to lime and PC, the SFS performed similarly in terms of heat of hydration behavior. When blended into clays, SFS provided a more significant heat of hydration behavior than cement, but that was much milder than lime. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were also employed to qualitatively analyze the mineralogy of the stabilized mixtures. Finally, this dissertation adopted a Digestion-Titration Method (DTM) for the determination of CO2 content in cementitious materials that has been mineralized in the form of calcium carbonate (CaCO3). This method was modified based on tests that were originally developed in the early 1900s. The method uses hydrochloric acid to digest CaCO3 under vacuum conditions. The CO2 released is captured by a barium hydroxide solution, which is then titrated to quantify the amount of CO2 absorbed. A design of experiments approach was used to optimize the experimental conditions. Samples of known CaCO3 content were first evaluated to establish the baseline test performance, and additional tests were performed on portland cement and various rock samples. The results were also compared to TGA, including a discussion to compare the two test methods. The data suggest that the new test method is feasibly applicable to chemically determine the CO2 captured in cementitious materials, and it can be an alternative method for TGA with lower experimental cost and easier access. Overall, it is evident that cement, concrete, and construction materials are essential to the functionality of civilization. Dealing with CO2 emissions and natural resource depletion induced by the production of these construction materials is urgent for sustainable development. Attempts toward construction materials with lower embodied CO2 by using low-carbon aggregates (e.g., waste aggregates, recycled aggregates) and alternative cementitious binders while controlling the environmental effects of the utilized waste materials are currently viable sustainable approaches. In addition, tools or new test methods that can support measuring the effectiveness of these reduced carbon cementitious materials are necessary. This dissertation investigates the feasibility of the use of ELT rubber waste in construction materials to reduce the exploitation of natural resources considering engineering properties and environmental impacts. It also provides a deeper understanding of the hydration behavior of stabilized soil using SFS which is expected to partially or fully replace PC in the material. Experimentally, it develops a chemical test model as an alternative method for TGA with lower experimental cost, less interference, and easier access to determine the CO2 captured in cementitious materials. / Doctor of Philosophy / Concrete, the second most consumed material on earth after water, is a source of environmental problems due to global urbanization. The production of this construction material requires a large amount of natural resources, and portland cement (PC) is responsible for around 8 % of planet-warming CO2 emissions. This dissertation presents different approaches and technologies to offset the CO2 footprint of the production of construction materials (i.e., cement clinker, concrete, and general cementitious materials). First, this dissertation investigated the possibility of using end-of-life tire (ELT) rubber powder in different construction materials including stabilized soft soil, portland cement concrete, and asphalt concrete. This work was discussed through aspects of engineering properties and environmental impacts. The results reveal that the ELT rubber had both negative and positive effects on the engineering properties of the three materials. In return, all three materials' matrices could effectively immobilize most leachable zinc and total organic carbon (TOC) from the ELT rubber, which are detrimental to aquatic animals, plants, and humans. Second, this dissertation used isothermal calorimetry (IC) for the first time to study the heat of hydration of soil stabilized by steel furnace slag (SFS) to assess the chemical aspects of the stabilization. The work compared the hydration behavior of SFS in clayey soil with traditional stabilizers such as lime or portland cement. The results demonstrated that there were chemical reactions taking place during the hydration of stabilized soil using SFS, explaining the improvement in engineering properties of the stabilized soil. Moreover, this dissertation adopted a Digestion-Titration Method (DTM) for the determination of mineralized CO2 content in cementitious materials. The method uses hydrochloric acid to digest CaCO3 under vacuum conditions. The CO2 released is captured by a barium hydroxide solution, which is then titrated to quantify the amount of CO2 absorbed. The data suggest that the new test method is feasibly applicable to chemically determine the CO2 mineralized in cementitious materials, and it can be an alternative method for thermogravimetric analysis with lower experimental cost and easier access. Overall, it is evident that cement, concrete, and construction materials are essential to the functionality of civilization. Dealing with CO2 emissions and natural resource depletion induced by the production of these construction materials is urgent for sustainable development. This dissertation is expected to fill the knowledge gap in carbon neutral construction materials research, including increasing the use of low-carbon aggregates (e.g., waste aggregates, recycled aggregates) and alternative cementitious binders as well as developing new test methods that can support measuring the effectiveness of these reduced carbon cementitious materials.
142

Effect of Pavement Condition on Traffic Crash Frequency and Severity in Virginia

Mohagheghi, Ali 30 September 2020 (has links)
Previous studies show that pavement condition properties are significant factors to enhance road safety and riding experience, and pavements with low quality might have inadequate performance in terms of safety and riding experience. Pavement Management System (PMS) databases include pavement properties for each segment of the road collected by the agencies. Understanding the impact of road characteristics on crash frequency is a key step to prevent crashes. Whereas other studies analyzed the effect of different characteristics such as International Roughness Index (IRI), Rutting Depth (RD), Annual Average Daily Traffic (AADT), this thesis analyzed the effect of Critical Condition Index (CCI) on crash frequency, in addition to the other factors identified in previous studies. Other characteristics such as Percentage of Heavy Vehicles, Road Surface Condition, Road Lighting Condition, and Driver Conditions are taken into the consideration. The scope of the study is the interstate highway system in Fairfax County, Virginia. Negative Binomial, Least Square and Nominal Logistic Models were developed, showing that the CCI value is a significant factor to predict the number of crashes, and that it has different effect for different values of AADT. The result of this study is a substantial step towards developing an integrated transportation control and infrastructure management framework. / Master of Science / Many factors cause crashes in the roads. Although there is a common sense that road characteristics such as asphalt quality are important in terms of road safety, there are few studies that scientifically prove that statement. In addition, asphalt maintenance decisions making process is mainly based on cost benefit optimization, and traffic safety is not considered at the process. The purpose of this study is to analyze crashes and road characteristics related to each crash to understand the effect of those characteristics on crash frequency, and eventually, to build a model to predict the number of crashes at each part of the road. The model can help transportation agencies to have a better understanding in terms of safety consequences of their infrastructure management plans. The scope of this study is the highway interstate system in Northern Virginia. Results suggest that pavement condition has a significant impact on crash frequency.
143

Rubber tyre and plastic waste use in asphalt concrete pavement

Onyango, Felix Odhiambo 12 1900 (has links)
M. Tech. (Civil Engineering, Faculty of Engineering and Technology), Vaal University of Technology) / Modified asphalt concrete is one of the important construction materials for flexible pavements. The addition of polymers and natural hydrocarbon modifiers to enhance the properties of asphalt concrete over a wide temperature range in paving applications has been the common practice. Currently these modified asphalt mixtures are relatively expensive. However, recycled polymers and rubber added to asphalt have also shown similar results in improving the performance of road pavements. In this study, an attempt has been made to use low density polyethylene (LDPE) obtained from plastic waste and crumb rubber obtained from worn out vehicle tyres. The aim was to optimise the proportions of LDPE in the bitumen binder using the ‘wet process’ and crumb rubber aggregates in the hot mix asphalt (HMA) using the ‘dry process’. The Marshall method of bituminous mix design was carried out for varying percentages of LDPE namely 2%, 4%, 6%, 8% and 10% by weight of bitumen binder and 1%, 2%, 3%, 4% and 5% crumb rubber by volume of the mineral aggregates. The characteristics of bitumen modified with LDPE were evaluated. The modified asphalt mix was also evaluated to determine the different mix characteristics. The results from laboratory studies in terms of the rheological properties of the LDPE modified bitumen binder showed an increase in viscosity, softening point and stiffness of the binder. The optimum Marshall stability values for HMA mixtures containing 2% crumb rubber tyre and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix. The wheel tracking test done at 50ºC was 9.81mm rut depth showing a good rutting resistance of the optimized mixture compared to the conventional asphalt mixes. The Modified Lottman test gave a Tensile Strength Ratio value of 0.979 which indicates a low degree of moisture susceptibility of the modified asphalt mix. The above results showed improved properties of the asphalt mixture. The economic assessment done using the present worth of costs indicated a reduction in maintenance cost due to the extended service life of the modified asphalt pavement.
144

Vietinių žaliavų skaldos, skirtos kelių asfaltbetonio dangai įrengti, tyrimai / Research Of Local Stock Breakstore Purposed For Asphalt Concrete Construction

Butėnas, Alfredas 20 June 2006 (has links)
In the work “Research of local stock breakstore purposed for asphalt concrete construction” presents data about hard minerals found and exploited in Lithuania. Minerals used for road building, maintenance and repair are reviewed with a greater focus on minerals used for road building: grit, sand, and dolomite. The paper carries on describing asphalt-concrete coatings and mixtures used for the coatings. The asphalt-concrete mixtures with gravel and dolomite chipping are analyzed. According to their stability, plasticity and porosity (Marshall’s) the usage of mixtures for certain construction class is defined. Is givven a recommendation for using this asphalt concrete mixtures. The major conclusions and the bibliography are presented in the end of the paper.
145

Funkční zkoušky na směsích zkušebního úseku s asfaltovým betonem s vysokým obsahem R-materiálu / Functional tests on mixtures of the test section with asphalt concrete and high amount of RAP

Kučerová, Marcela January 2018 (has links)
The diploma thesis is focused on the testing of asphalt mixtures of asphalt concrete containing reclaimed asphalt and laying of the test section. The theoretical part deals with the use of reclaimed asphalt in hot asphalt mixtures, namely the specifics of rejuvenating agents, aging and asphalt mixture. Further more information on the functional properties of asphalt mixtures and the influence of reclaimed asphalt on them is given. The practical part describes testing of mixtures of ACO 11+ and ACO 11+ with 50% reclaimed asphalt and tests on asphalt binders. In order to compare the proposed mixtures, the low thermal properties of ČSN EN 12697-46 and the stiffness modules according to ČSN EN 12697-26. In the last part of the diploma thesis the results of the measured values were compared with each other in order to determine of asfphalt recovery. From the overall test results, it can be seen that the effect of the rejuvenating agent was positive. However, the desired degree of rejuvenation has not been achieved after production.
146

Návrh a posouzení asfaltového betonu pro ložní vrstvy s asfaltem modifikovaným pryžovým granulátem / Design and evaluation of asphalt rubber mixture for pavement binder course

Musílek, Lukáš January 2013 (has links)
The design of asphalt concrete for binder courses with high-viscosity asphalt rubber and low-viscosity asphalt rubber is carried out in the diploma thesis. Selected performance tests (low temperature characteristics, stiffness and fatigue) and water sensitivity are performed for these mixtures. Results are compared each other.
147

Asfaltocementový beton / Open-graded asphalt concrete filled with a special cement grout

Lutonský, Filip January 2013 (has links)
The thesis is aimed at deepening knowledge about the design and use of open-graded asphalt concrete filled with a special cement grout. The first part is the issue discussed theoretically with reference to the real possibility of practical application, a description of the various manufacturers and their patented technologies. The second part of this work is devoted to assess the resistance of this technology to chemical de-icing agents.
148

Využití polymerem modifikovaných asfaltů a oživovacích přísad v asfaltových směsích / Usage of polymer modified bitumens and rejuvenators in asphalt mixtures

Maláník, Stanislav Unknown Date (has links)
Diploma thesis deals with the influence of various dosing of Reclaimed asphalt pavement (RAP) using modified bitumen on the properties of asphalt concrete (ACO 11+) of cemented by polymer modified bitumen, while a rejuvenating agents are added into asphalt mixtures. The theoretical part of the thesis summarizes the basic knowledge of pavement recycling, polymer modified bitumens and their reuse in asphalt mixtures. The practical part deals with laboratory tests of ACO 11+ mixtures with the RAP proportion of 0 % to 50 %. The asphalt mixtures compared are evaluated by means of the Thermal Stress Restrained Specimen Test (TSRST) and Stiffness test. The results obtained within the diploma thesis can approximate the issue of recycling of asphalt mixtures with polymer modified bitumens.
149

Využití R-materiálu v asfaltových směsích s pojivem typu PMB / Use of R-material in asphalt mixtures with PMB type binder

Navrátilová, Pavlína Unknown Date (has links)
The diploma thesis is focused on the use of R-material in asphalt mixtures with a PMB type binder. The work is divided into a theoretical part and a practical part. The theoretical part describes the acquisition of R-material by road milling, the use of R-material, the binder used in the practical part of the work and the types of recycling. The practical part deals with the design of four types of asphalt mixtures with different content of R-material in the asphalt mixture. It also deals with the description of functional tests of asphalt mixtures and the results of these tests.
150

Etude expérimentale et numérique du comportement au gel et au dégel des enrobés bitumineux partiellement saturés / Experimental and numerical study of the behavior in freezing and in thawing conditions of partially saturated bituminous mixes

Vu, Van Thang 18 December 2017 (has links)
L’apparition massive de nids de poule sur chaussées bitumineuses a été observée en cours d’hiver sur de très courtes périodes de temps, caractérisées par l’alternance entre températures positives et fortement négatives accompagnée de précipitations pluvieuses. Ceci a conduit à rechercher un mécanisme spécifique de dégradation de couches d’enrobés bitumineux (EB) lié au comportement au gel des EB partiellement saturés en eau. Celui-ci a été étudié en laboratoire à partir d’essais à déformation libre ou empêchée, avec ajout de chaux pour certaines formules d’EB.Ces essais ont montré l’apparition de déformations de gonflement ou contraintes importantes induites lors du gel de l’eau interstitielle. D’autres essais utilisant l’IRM ont permis de visualiser le phénomène au sein du matériau. Sur la base de ces essais, nous proposons une loi de comportement thermoviscoélastique avec changement de phase pour EB. Un programme aux éléments finis a été développé (Free Fem++)pour intégrer cette loi dans le calcul de structures ; ce code couple les équations mécaniques et de diffusion de la chaleur prenant également en compte le changement de phase à travers la chaleur latente de solidification de l’eau interstitielle.Après validation du logiciel, celui-ci a été appliqué au calcul de structures bitumineuses bicouches représentatives des couches supérieures d’une chaussée. Les résultats mettent alors en évidence l’apparition de contraintes d’arrachement élevées à l’interface entre couches générées par le gel,susceptibles d’expliquer la formation de nids de poule. Un essai de laboratoire sur bicouche a confirmé la fragilisation de l’interface induite dès le premier cycle de gel. / Massive development of potholes occurring in bituminous pavements was observed during winters over short time laps characterized by temperature alternating between positive and highly negative values along with rainfalls. This led us to seek for a specific mechanism of degradation of asphalt concrete (AC) layers, related to the behavior of partially saturated AC subjected to freeze. Two types of laboratory tests were performed under traction free and restrained strain conditions to study the behavior of AC within this context, incorporating lime additive in some mix design formulations. These tests showed the development of large swelling strains or stresses induced by the phase change of pore water into ice. Additional tests using MRI allowed us to visualize this phenomenon from inside the material specimens. Based on these tests, we developed a thermoviscoelastic constitutive law including phase change for partially saturated AC. A Finite Element (FE) program was implemented (FreeFem++) to introduce the developed law instructural calculations; this FE code handles the coupling between mechanics and the heat equation, also taking into account the phase change through the latent heat of crystallization of pore water. After validating the software, this numerical tool was utilized to compute the response of bilayer bituminous structures representative of the upper layers of a pavement. The results obtained show the development of highfrost-induced pull-out stresses located at the interface between the layers, likely to explain the formation of potholes. A test carried out on a bilayer sample confirmed the weakening of the interface right after the first frost cycle.

Page generated in 0.13 seconds