Spelling suggestions: "subject:"associative structure"" "subject:"dissociative structure""
1 |
Etude des interactions à l'origine de la structure associative du caoutchouc naturel et de leurs influences sur les propriétés rhéologiques / Study of the interactions underlying the associative structure of Natural Rubber and its effects on rheological propertiesRolere, Sebastien 22 October 2015 (has links)
Le caoutchouc naturel (CN) est un élastomère produit à partir du latex d'Hevea brasiliensis. Ce matériau est constitué en moyenne de 94% (m/m) de poly(cis-1,4-isoprène) et de 6% (m/m) de composés non-isoprènes avec notamment des lipides (1,5-3,0%), des protéines (~ 2,0%) et des éléments minéraux (0,2%). Ces composés non-isoprènes seraient responsables de la structure associative ainsi que des propriétés remarquables du CN. Ce matériau présente une grande variabilité de ses propriétés de mise en œuvre, liée aux conditions agronomiques (saison, clones, système d'exploitation) et aux différents procédés de fabrication existants. Le projet CANAOPT, dans lequel s'inscrit cette thèse, vise à identifier et à quantifier les sources de variabilité, ainsi qu'à développer de nouveaux grades de CN à variabilité réduite et contrôlée pour les applications antivibratoires. Ces travaux de thèse visent à mieux comprendre l'origine du gel du CN et son influence sur les propriétés rhéologiques du matériau. Cette phase gel (ou gel total) est constituée d'une fraction insoluble en solvant organique appelée le macrogel, et d'une fraction de microagrégats dispersés dans la fraction soluble et appelée le microgel.Le premier axe de recherche de cette thèse vise à identifier l'effet du gel sur les propriétés rhéologiques du CN. Dans ce but, des méthodes ont été développées afin de quantifier les différents taux de gels du CN, de caractériser la structure des chaînes de poly(cis-1,4-isoprène) et des microagrégats (SEC-MALS en mode TBABr), mais également de mesurer les propriétés rhéologiques en double cisaillement (DMTA). Une méthode permettant de caractériser rapidement le taux de composés non-isoprènes des échantillons par spectroscopie FT-IR a également été mise au point. Des corrélations ont d'abord été mises en évidence entre les masses molaires moyennes des macromolécules et les propriétés rhéologiques d'une sélection de 25 échantillons différents. Enfin, une corrélation a également été mise en évidence entre le taux de gel total et le paramètre K' décrit par le modèle de Perez. Ce paramètre est déterminé graphiquement par la représentation Cole-Cole. En parallèle, ces travaux se sont portés sur une caractérisation physico-chimique du microgel et du macrogel du CN. Une méthodologie d'extraction du microgel a été mise en place, et a permis la caractérisation des microagrégats du CN. La composition, le degré de réticulation, et les propriétés rhéologiques des macrogels issus d'une sélection de 11 échantillons de CN ont également été étudiés. Il a été montré que le taux de protéines contenus dans le macrogel (5-51% m/m) est directement lié à son degré de réticulation et impacte ses propriétés rhéologiques, très supérieures à celles du CN brut et de la fraction soluble correspondants. / Natural Rubber (NR) is an elastomer made from Hevea brasiliensis latex. It contains about 94% (w/w) of cis-1,4-polyisoprene and 6% (w/w) of non-isoprene compounds, such as lipids (1.5-3.0%), proteins (~ 2.0%) and minerals (0.2%). These non-isoprene compounds are assumed to be responsible for the associative structure and the outstanding properties of NR. However, substantial variability in NR properties is caused by diverse agronomic conditions (season, clones and tapping system) and by the different manufacturing processes. This PhD thesis is part of the French CANAOPT project, which aims to create new NR grades with reduced and controlled variability for antivibratory applications. This PhD work aims for a better understanding of the origin of the NR gel phase and its influence on rheological properties. The gel phase of NR (or total gel) is composed of a fraction that is insoluble in organic solvent (macrogel), and of microaggregates dispersed in the soluble fraction (microgel). The first component of this PhD research set out to identify the impact of the gel phase on NR properties. To that end, characterization methods were developed in order to investigate the different gel contents, the structures of cis-1,4-polyisoprene chains and microaggregates (SEC-MALS in TBABr mode), and also rheological properties in double-shear solicitation (DMTA) of NR samples. The non-isoprene contents (lipids and proteins) were also investigated using a new characterization method in FT-IR spectroscopy, developed during this PhD work. Correlations between the average molar masses of the macromolecules and the rheological properties of 25 NR samples were highlighted. Finally, a correlation was found between the total gel content and a K' parameter, introduced by the Perez model and graphically determined by the Cole-Cole representation.At the same time, physicochemical characterization of the microgel and the macrogel of NR samples was undertaken. First, a new method was developed in order to extract and study NR microaggregates. The composition, the degree of crosslinking and the rheological properties of macrogels extracted from 11 NR samples were also investigated. It was found that the protein content (5-51% w/w) of the macrogel was clearly correlated to its degree of crosslinking. The macrogel protein content also influenced its rheological properties, which were much greater than those of the corresponding NR and soluble fraction.
|
Page generated in 0.0872 seconds