• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles de dépendance hiérarchique pour l'évaluation des passifs et la tarification en actuariat

Abdallah, Anas 24 April 2018 (has links)
Dans cette thèse on s’intéresse à la modélisation de la dépendance entre les risques en assurance non-vie, plus particulièrement dans le cadre des méthodes de provisionnement et en tarification. On expose le contexte actuel et les enjeux liés à la modélisation de la dépendance et l’importance d’une telle approche avec l’avènement des nouvelles normes et exigences des organismes réglementaires quant à la solvabilité des compagnies d’assurances générales. Récemment, Shi et Frees (2011) suggère d’incorporer la dépendance entre deux lignes d’affaires à travers une copule bivariée qui capture la dépendance entre deux cellules équivalentes de deux triangles de développement. Nous proposons deux approches différentes pour généraliser ce modèle. La première est basée sur les copules archimédiennes hiérarchiques, et la deuxième sur les effets aléatoires et la famille de distributions bivariées Sarmanov. Nous nous intéressons dans un premier temps, au Chapitre 2, à un modèle utilisant la classe des copules archimédiennes hiérarchiques, plus précisément la famille des copules partiellement imbriquées, afin d’inclure la dépendance à l’intérieur et entre deux lignes d’affaires à travers les effets calendaires. Par la suite, on considère un modèle alternatif, issu d’une autre classe de la famille des copules archimédiennes hiérarchiques, celle des copules totalement imbriquées, afin de modéliser la dépendance entre plus de deux lignes d’affaires. Une approche avec agrégation des risques basée sur un modèle formé d’une arborescence de copules bivariées y est également explorée. Une particularité importante de l’approche décrite au Chapitre 3 est que l’inférence au niveau de la dépendance se fait à travers les rangs des résidus, afin de pallier un éventuel risque de mauvaise spécification des lois marginales et de la copule régissant la dépendance. Comme deuxième approche, on s’intéresse également à la modélisation de la dépendance à travers des effets aléatoires. Pour ce faire, on considère la famille de distributions bivariées Sarmanov qui permet une modélisation flexible à l’intérieur et entre les lignes d’affaires, à travers les effets d’années de calendrier, années d’accident et périodes de développement. Des expressions fermées de la distribution jointe, ainsi qu’une illustration empirique avec des triangles de développement sont présentées au Chapitre 4. Aussi, nous proposons un modèle avec effets aléatoires dynamiques, où l’on donne plus de poids aux années les plus récentes, et utilisons l’information de la ligne corrélée afin d’effectuer une meilleure prédiction du risque. Cette dernière approche sera étudiée au Chapitre 5, à travers une application numérique sur les nombres de réclamations, illustrant l’utilité d’un tel modèle dans le cadre de la tarification. On conclut cette thèse par un rappel sur les contributions scientifiques de cette thèse, tout en proposant des angles d’ouvertures et des possibilités d’extension de ces travaux. / The objective of this thesis is to propose innovative hierarchical approaches to model dependence within and between risks in non-life insurance in general, and in a loss reserving context in particular. One of the most critical problems in property/casualty insurance is to determine an appropriate reserve for incurred but unpaid losses. These provisions generally comprise most of the liabilities of a non-life insurance company. The global provisions are often determined under an assumption of independence between the lines of business. However, most risks are related to each other in practice, and this correlation needs to be taken into account. Recently, Shi and Frees (2011) proposed to include dependence between lines of business in a pairwise manner, through a copula that captures dependence between two equivalent cells of two different runoff triangles. In this thesis, we propose to generalize this model with two different approaches. Firstly, by using hierarchical Archimedean copulas to accommodate correlation within and between lines of business, and secondly by capturing this dependence through random effects. The first approach will be presented in chapters 2 and 3. In chapter 2, we use partially nested Archimedean copulas to capture dependence within and between two lines of business, through calendar year effects. In chapter 3, we use fully nested Archimedean copulas, to accommodate dependence between more than two lines of business. A copula-based risk aggregation model is also proposed to accommodate dependence. The inference for the dependence structure is performed with a rank-based methodology to bring more robustness to the estimation. In chapter 4, we introduce the Sarmanov family of bivariate distributions to a loss reserving context, and show that its flexibility proves to be very useful for modeling dependence between loss triangles. This dependence is captured by random effects, through calendar years, accident years or development periods. Closed-form expressions are given, and a real life illustration is shown again. In chapter 5, we use the Sarmanov family of bivariate distributions in a dynamic framework, where the random effects are considered evolutionary and evolve over time, to update the information and allow more weight to more recent claims. Hence, we propose an innovative way to jointly model the dependence between risks and over time with an illustration in a ratemaking context. Finally, a brief conclusion recalls the main contributions of this thesis and provides insights into future research and possible extensions to the proposed works.

Page generated in 0.1165 seconds