• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • Tagged with
  • 112
  • 52
  • 52
  • 41
  • 35
  • 33
  • 32
  • 27
  • 25
  • 25
  • 24
  • 24
  • 24
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Stretching Directions in Cislunar Space: Stationkeeping and an application to Transfer Trajectory Design

Vivek Muralidharan (11014071) 23 July 2021 (has links)
<div>The orbits of interest for potential missions are stable or nearly stable to maintain long term presence for conducting scientific studies and to reduce the possibility of rapid departure. Near Rectilinear Halo Orbits (NRHOs) offer such stable or nearly stable orbits that are defined as part of the L1 and L2 halo orbit families in the circular restricted three-body problem. Within the Earth-Moon regime, the L1 and L2 NRHOs are proposed as long horizon trajectories for cislunar exploration missions, including NASA's upcoming Gateway mission. These stable or nearly stable orbits do not possess well-distinguished unstable and stable manifold structures. As a consequence, existing tools for stationkeeping and transfer trajectory design that exploit such underlying manifold structures are not reliable for orbits that are linearly stable. The current investigation focuses on leveraging stretching direction as an alternative for visualizing the flow of perturbations in the neighborhood of a reference trajectory. The information supplemented by the stretching directions are utilized to investigate the impact of maneuvers for two contrasting applications; the stationkeeping problem, where the goal is to maintain a spacecraft near a reference trajectory for a long period of time, and the transfer trajectory design application, where rapid departure and/or insertion is of concern.</div><div><br></div><div>Particularly, for the stationkeeping problem, a spacecraft incurs continuous deviations due to unmodeled forces and orbit determination errors in the complex multi-body dynamical regime. The flow dynamics in the region, using stretching directions, are utilized to identify appropriate maneuver and target locations to support a long lasting presence for the spacecraft near the desired path. The investigation reflects the impact of various factors on maneuver cost and boundedness. For orbits that are particularly sensitive to epoch time and possess distinct characteristics in the higher-fidelity ephemeris model compared to their CR3BP counterpart, an additional feedback control is applied for appropriate phasing. The effect of constraining maneuvers in a particular direction is also investigated for the 9:2 synodic resonant southern L2 NRHO, the current baseline for the Gateway mission. The stationkeeping strategy is applied to a range of L1 and L2 NRHOs, and validated in the higher-fidelity ephemeris model.</div><div><br></div><div>For missions with potential human presence, a rapid transfer between orbits of interest is a priority. The magnitude of the state variations along the maximum stretching direction is expected to grow rapidly and, therefore, offers information to depart from the orbit. Similarly, the maximum stretching in reverse time, enables arrival with a minimal maneuver magnitude. The impact of maneuvers in such sensitive directions is investigated. Further, enabling transfer design options to connect between two stable orbits. The transfer design strategy developed in this investigation is not restricted to a particular orbit but applicable to a broad range of stable and nearly stable orbits in the cislunar space, including the Distant Retrograde Orbit (DROs) and the Low Lunar Orbits (LLO) that are considered for potential missions. Examples for transfers linking a southern and a northern NRHO, a southern NRHO to a planar DRO, and a southern NRHO to a planar LLO are demonstrated.</div>
112

Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon Systems

Brian P. McCarthy (5930747) 17 January 2019 (has links)
<div>As destinations of missions in both human and robotic spaceflight become more exotic, a foundational understanding the dynamical structures in the gravitational environments enable more informed mission trajectory designs. One particular type of structure, quasi-periodic orbits, are examined in this investigation. Specifically, efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, periodic orbits and their associated center manifold are discussed to provide the background for the existence of quasi-periodic motion on n-dimensional invariant tori, where n corresponds to the number of fundamental frequencies that define the motion. Single and multiple shooting differential corrections strategies are summarized to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem (CR3BP) using a stroboscopic mapping technique, originally developed by Howell and Olikara. Three types of quasi-periodic orbit families are presented: constant energy, constant frequency ratio, and constant mapping time families. Stability of quasi-periodic orbits is summarized and characterized with a single stability index quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the differential of a discretized invariant curve. The use of quasi-periodic orbits is also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are examined in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve constant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for transfer trajectory initial guesses between nearly stable periodic orbits in the Earth-Moon system. Lastly, stable hyperbolic manifolds from a Sun-Earth L<sub>1</sub> quasi-vertical orbit are employed to design maneuver-free transfer from the LEO vicinity to a quasi-vertical orbit.</div>

Page generated in 0.0379 seconds