• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 4
  • Tagged with
  • 20
  • 20
  • 20
  • 12
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molecular function of the cell polarity protein partner of inscuteable in Drosophila neuroblasts

Nipper, Rick William Jr., 1978- 12 1900 (has links)
xiii, 48 p. : (col. ill.) A print copy of this title is available through the UO Libraries under the call number: SCIENCE QL537.D76 N57 2007 / Asymmetric cell division (ACD) is a unique mechanism employed during development to achieve cellular diversity from a small number of progenitor cells. Cells undergoing ACD distribute factors for self-renewal at the apical cortex and factors for differentiation at the basal cortex. It is critical for proper development that the mitotic spindle be tightly coupled to this axis of polarization such that both sets of proteins are exclusively segregated into the daughter cells. We use ACD in Drosophila neuroblasts as a model system for understanding the molecular mechanisms that govern spindle-cortical coupling. Neuroblasts polarize Partner of Inscuteable (Pins), Gαi and Mushroom Body Defect (Mud) at the apical cell cortex during mitosis. Gαi and Pins are required for establishing cortical polarity while Mud is essential for spindle-cortical alignment. Gαi and Mud interact through Pins GoLoco domains and tetratricopeptide repeats (TPR) respectively, however it is unclear how Mud activity is integrated with Pins and Gαi to link neuroblast cortical polarity to the mitotic spindle. This dissertation describes how Pins interactions with Gαi and Mud regulate Iwo fundamental aspects of neuroblast ACD: cortical polarity and alignment of the spindle with the resulting polarity axis. I demonstrate that Pins is a dynamic scaffolding protein that undergoes a GoLoco-TPR intramolecular interaction, resulting in a conformation of Pins with low Mud and reduced Gαi binding affinity. However, Pins TPR domains fail to completely repress Gαi binding, as a single GoLoco is unaffected by the intramolecular isomerization. Gαi present at the apical cortex specifies Pins localization through binding this "unregulated" GoLoco. Liberation of Pins intramolecularly coupled state occurs through cooperative binding of Gαi and Mud to the other GoLoco and TPR domains, creating a high-affinity Gαi-Pins-Mud complex. This autoregulatory mechanism spatially confines the Pins-Mud interaction to the apical cortex and facilitates proper apical-spindle orientation. In conclusion, these results suggest Gαi induces multiple Pins states to both properly localize Pins and ensure tight coupling between apical polarity and mitotic spindle alignment. / Adviser: Ken Prehoda
12

Atypical protein kinase C regulates Drosophila neuroblast polarity and cell-fate specification

Atwood, Scott X. 09 1900 (has links)
xiii, 92 p. ; ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Cellular polarity is a biological mechanism that is conserved across metazoa and is used in many different biological processes, one of which is stem cell self-renewal and differentiation. Stem cells generate cellular diversity during development by polarizing molecular determinants responsible for directing one daughter cell to maintain stem cell-like qualities and the other daughter cell to initiate a specific cell fate. The stem cell self-renewal versus differentiation choice is critical to avoid overproliferation of stem cells and tumor formation or underdevelopment of tissues and early animal death. Drosophila neural stem cells (neuroblasts) undergo asymmetric cell division (ACD) to populate the fly central nervous system and provide an excellent model system to study processes involving cellular polarity, ACD, stem cell self-renewal, and differentiation. Neuroblasts divide unequally to produce a large, apical self-renewing neuroblast and a small, basal ganglion mother cell that goes on to divide and form two neurons or glia. In this way, a small population of neuroblasts can give rise to thousands of neurons and glia to generate a functional central nervous system. Atypical Protein Kinase C (aPKC) is critical to establish and maintain neuroblast polarity, ACD, stem cell self-renewal, and differentiation. aPKC is part of the evolutionarily conserved Par complex, whose other members include Bazooka and Par-6, and they localize to the neuroblast apical cortex and function to restrict cell-fate determinants into one daughter cell. How aPKC is asymmetrically localized and how its activity translates into cell-fate specification are of incredible importance as apkc mutants where localization is disrupted no longer segregate cell-fate determinants. This work will show that Cdc42 recruits the Par-6/aPKC complex to the neuroblast apical cortex independent of Bazooka. Once there, aPKC phosphorylates the cell-fate determinant Miranda to exclude it from the apical cortex and restrict it basally. Par-6 and Cdc42 regulate aPKC kinase activity though inter- and intramolecular interactions that allow high aPKC kinase activity at the apical cortex and suppressed activity elsewhere. Cdc42 also functions to keep aPKC asymmetrically localized by recruiting the PAK kinase Mushroom bodies tiny to regulate cortical actin and provide binding sites for cortical polarity determinants. This dissertation includes previously published co-authored material. / Adviser: Kenneth Prehoda
13

Division asymétrique et remodelage de la polarité épithéliale : dynamique de la polarisation des cellules précurseurs des organes sensoriels externes chez drosophila melanogaster / Asymmetric cell division and epithelial polarity remodeling : drosophila melanogaster external sensory organ precursor cell polarisation dynamic

Besson, Charlotte 22 September 2014 (has links)
Les divisions asymétriques permettent l’apparition de deux cellules filles différentes via la ségrégation polarisée de déterminants cellulaires pendant la division. La polarisation de la cellule mère est essentielle au bon déroulement des divisions asymétriques. Les précurseurs des organes sensoriels externes de la Drosophile (SOP) se divisent asymétriquement dans le plan de l’épithélium du thorax. La polarisation planaire des SOP dépend de la localisation asymétrique du complexe PAR (Baz-Par6-aPKC). Néanmoins, ces protéines sont aussi impliquées dans le maintient de la polarité apico-basale de l’épithélium. Les mécanismes régulant le remodelage de la polarité épithéliale, permettant la polarisation planaire du complexe PAR sont inconnus.Au cours de ma Thèse, j’ai développé une méthode d’analyse quantitative de la polarisation des protéines PAR au cours du temps. Je montre que Baz, Par6 et aPKC se sont asymétriques avant la mitose, et que cette polarisation dépend de la PCP (Planar Cell Polarity). J’ai également identifié Expanded (ex) et p120/catenin (p120ctn), dont l’expression est réduite dans les SOP, respectivement comme régulateurs de Crumbs et de la dynamique des jonctions. Leur inhibition promeut le remodelage de la polarité épithéliale et la polarisation des SOP.Un modèle de polarisation de la SOP est proposé, où l’inhibition spécifique d’ex et de p120ctn libère Par6-aPKC et Baz, permettant la formation du complexe PAR. Ce dernier interprète la PCP et devient asymétrique. Ainsi, ce travail relie la spécification de la SOP et sa division asymétrique, et propose un modèle général pour l’étude des divisions asymétriques dans les épithéliums. / During development, cell fate diversity can be generated by asymmetric cell division. As fate asymmetry can result from the unequal segregation at mitosis of cell fate determinants, polarization of the mother cell is essential for this process. The epithelial Sensory Organ Precursor cells (SOPs) divide asymmetrically within the plane of the notum epithelium in Drosophila. Planar polarization of mitotic SOPs critically depends on the asymmetric distribution of the PAR polarity complex. Nevertheless, PAR proteins are also involved in the maintenance of epithelial apico-basal polarity. When and how this epithelial polarity is remodelled to allow planar polarization of the PAR complex is unknown. During my thesis, I developed a quantitative live-imaging approach to monitor polarization of the PAR proteins. I showed that the three members of the PAR complex (Bazooka (Baz), Par6 and atypical Protein Kinase C (aPKC)) become planar polarized prior to mitosis and identified Planar Cell Polarity (PCP) as the initial symmetry breaking input. Expanded (Ex) and p120/catenin (p120ctn) were identified as SOP-specific regulators of Crumbs and AJ dynamics, respectively, that negatively regulate planar polarization in SOPs. This work led to a model whereby decreasing levels of Ex and p120ctn in SOPs increases free Par6-aPKC and Baz to promote the formation and polarization of the Baz-Par6-aPKC complex. Thus, this study links fate determination to asymmetric cell division and provides a general framework to understand how epithelial cells can divide asymmetrically despite having junctions.
14

Etude comparative du positionnement du fuseau mitotique dans les espèces de C.elegans et C. briggsae / Comparative study of the mitotic spindle positioning in C. elegans and C. briggsae species

Riche, Soizic 09 December 2015 (has links)
La division cellulaire asymétrique est un mécanisme fondamental qui assure la diversité cellulaire, le renouvellement des cellules souches et le maintien de l’identité cellulaire. Elle dépend du bon positionnement du fuseau mitotique car il dicte le plan de division des cellules. La première division des embryons de C. elegans, est asymétrique et génère deux cellules fille de taille et devenir différents. Elle consiste en deux étapes : la centration des pronoyaux en prophase puis le déplacement postérieur du fuseau mitotique en anaphase. Lors de l'anaphase le fuseau subit des oscillations transverses plus marquées au pôle postérieur qu’au pôle antérieur. Ces mouvements sont contrôlés par des forces de traction agissant sur les microtubules astraux. Les générateurs de force ont été moléculairement identifiés et sont évolutivement très conservés. Un complexe composé de protéines Gα, liées à GPR (protéine à domaine GoLoco, homologue de LGN/Pins), à LIN-5 (protéine à domaine super-enroulé, homologue de NuMA/Mud) et à la dynéine serait ancré au cortex et activé en début de mitose pour tirer le fuseau. En analysant la première division d’une espèce proche de C. elegans : C. briggsae, on observe des variations de trajectoire du fuseau. Les embryons de C. briggsae présentent un décalage antérieur des noyaux en prophase et les oscillations du fuseau sont réduites en anaphase. La combinaison de perturbations physiques et l'analyse de mutants dans ces espèces, ont montré que ces différences s’expliquent par des changements dans la régulation du complexe ternaire. Mais, nous avons découvert que dans les deux espèces 1) un switch positionnel conservé contrôle le démarrage des oscillations du fuseau, 2) la localisation postérieure de GPR détermine ce switch positionnel, et 3) l'amplitude maximum des oscillations est déterminée en partie par le temps passé dans la phase oscillatoire. Nous avons utilisés ces variants pour corréler les phénotypes, la localisation de GPR et la divergence de séquence entre espèces afin d’identifier les éléments de régulation de cette protéine. Nous avons alors échangé les protéines et construits des protéines chimères entre les deux espèces. Enfin, par optogénétique, nous avons essayé de contrôler la localisation temporelle de GPR et analyser les conséquences sur les mouvements des noyaux et du fuseau. En étudiant la microévolution d'un processus sous-cellulaire, nous avons identifié de nouveaux mécanismes qui contribuent à la compréhension du positionnement du fuseau. / Asymmetric cell division is a fundamental mechanism essential in all organisms to assure cell diversity, stem cell renewal and cellular identity maintenance. It is relying on proper mitotic spindle positioning because it dictates the cell division plan. In C. elegans one-cell embryos, the first division is asymmetric and gives rise to two daughter cells of unequal size and fate. It occurs in two steps: pronuclei centration during prophase and spindle posterior displacement during anaphase. During anaphase, the mitotic spindle undergoes transverse oscillations that are more pronounced for the posterior than the anterior pole. These movements are controlled by pulling forces acting on astral microtubules. The force generators are identified and are evolutionary conserved. A complex made of Gα proteins, linked to GPR (a GoLoco containing protein, the LGN/Pins homologues), LIN-5 (a coiled-coil protein, the NuMA/Mud homologues) and dynein is thought to be anchored at the cortex and activated at the onset of mitosis to pull on the spindle. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of a close relative of C. elegans, C. briggsae. Compared to C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by inter-species changes in the regulation of the cortical Gα/GPR/LIN-5 complex. However, we uncover that in both species 1) a conserved positional switch controls the onset of spindle oscillations, 2) GPR posterior localization may set this positional switch, and 3) the maximum amplitude of spindle oscillations is determined in part by the time spent in the oscillating phase. Interestingly, GPR is poorly conserved at the amino acid level between these species. We use these variants to correlate phenotypes, GPR localization and sequence divergence to identify GPR regulatory elements. To this end, we performed protein replacement between species, as well as analysis of protein chimeras. Finally we tried to use optogenetics in order to control GPR localisation temporally and analyze the consequences on pronuclei and spindle movements during the first division. By investigating microevolution of a subcellular process, we identified new mechanisms that are instrumental to decipher spindle positioning.
15

Molecular Regulation of Muscle Stem Cell Self-Renewal

Wang, Yu Xin January 2016 (has links)
Muscle stem cells self-renew to maintain the long-term capacity for skeletal muscles to regenerate. However, the homeostatic regulation of muscle stem cell self-renewal is poorly understood. By utilizing high-throughput screening and transcriptomic approaches, we identify the critical function of dystrophin, the epidermal growth factor receptor (EGFR), and fibronectin in the establishment of cell polarity and in determining symmetric and asymmetric modes of muscle stem cell self-renewal. These findings reveal an orchestrated network of paracrine signaling that regulate muscle stem cell homeostasis during regeneration and have profound implications for the pathogenesis and development of therapies for Duchenne muscular dystrophy.
16

Régulation de l'orientation du fuseau mitotique des divisions cellulaires asymétriques pendant le développement de la rétine : rôles de SAPCD2 et LGN

Monat-Reliat, Carine 01 1900 (has links)
La division cellulaire asymétrique est un des processus clefs pour générer la diversité cellulaire au cours du développement. La régulation de l’orientation du fuseau mitotique est essentielle pour la production de divisions asymétriques. Elle détermine l’héritage asymétrique des déterminants cellulaires entre les cellules filles. Les mécanismes qui contrôlent l’orientation du fuseau mitotique sont bien caractérisés chez le nématode C. elegans et la mouche Drosophile. Ces modèles ont permis d'identifier les protéines clefs impliquées dans ce processus et conservées chez les mammifères, comme celles du complexe d’orientation du fuseau mitotique : Gαi-LGN-NuMA, et celles du complexe de polarité apicale : PAR3-PAR6-aPKC. Chez les vertébrés, la localisation cortico-latérale de LGN-NuMA dans les progéniteurs neuraux en division est déterminante pour l'orientation planaire du fuseau mitotique, mais son mécanisme de régulation reste inconnu. Nous utilisons la rétine de souris en développement comme modèle expérimental pour sa simplicité et son accessibilité. Des résultats antérieurs de notre laboratoire ont démontré que l'asymétrie de la division dépend de l’orientation du fuseau mitotique, et que cette orientation change au cours au développement. Les rares divisions verticales apparaissent surtout aux stades tardifs de la rétinogenèse. Le but de cette thèse est d'élucider les mécanismes régulateurs du changement d'orientation au cours de la rétinogenèse, et de déterminer le rôle des divisions asymétriques dans les phases prolifératives et neurogéniques du développement de la rétine. Avec nos collaborateurs, le laboratoire du Dr Stéphane Angers, nous avons identifié SAPCD2 (suppressor APC domain containing 2), comme un nouvel interacteur des protéines Gαi, LGN et PAR3. Le rôle du gène Sapcd2 est peu décrit jusqu'à ce jour. Son expression protéique varie au cours du cycle cellulaire, avec un pic d'expression en mitose, et sa surexpression est observée dans plusieurs cas de cancers. Dans un premier temps, nous avons analysé l'expression de Sapcd2 et Lgn dans la rétine de souris en développement. Leur expression varie selon les phases de la mitose et du stade développemental. À P0, soit le premier jour postnatal, SAPCD2 et LGN ont une localisation cellulaire complémentaire dans les progéniteurs en division, avec un enrichissement à la membrane apicale et au cortex cellulaire latéral respectivement, dans des proportions corrélées au nombre de divisions planaires. Tandis qu'au jour embryonnaire 14.5 (E14.5), SAPCD2 et LGN sont toutes deux localisées aux pôles du fuseau mitotique, suggérant des rôles dynamiques au cours du développement rétinien. Nous avons ensuite analysé l’orientation du fuseau mitotique à E14.5 et P0, dans des souris en absence de Sapcd2 et/ou Lgn. En parallèle de l'étude de la souris mutante Sapcd2, j'ai participé à l'étude de la souris mutante Lgn à P0, menée par Dre Marine Lacomme, post-doctorante au laboratoire. En absence de Lgn à P0, les divisions horizontales augmentent, à l'inverse de l'absence de Sapcd2, où les divisions verticales augmentent. Pour savoir si ces changements d’orientation affectent le destin cellulaire, nous avons réalisé une analyse clonale des divisions terminales dans des explants rétiniens. Cette approche permet de suivre l'effet d'une délétion clonale d'un gène dans le lignage d’un seul progéniteur. Comme attendu, l'ablation clonale de Sapcd2 augmente les divisions asymétriques terminales, produisant deux cellules postmitotiques différentes, et inversement sans Lgn. En termes de mécanisme, SAPCD2 compétitionne avec NuMA pour se lier à LGN, dont elle régule négativement la localisation au cortex de la cellule. Le phénotype rétinien des souris doubles mutantes Lgn;Sapcd2 est sévère, avec une quasi-exclusivité de divisions verticales, une augmentation de la prolifération globale, du nombre de cellules mitotiques non apicales, et une drastique expansion de la population neuronale avec une couche cellulaire supplémentaire, composée de presque tous les types cellulaires rétiniens. Cette hyperprolifération pourrait être due à l'augmentation des divisions verticales, engendrant une asymétrie de l'héritage du déterminant cellulaire NUMB, antagoniste de Notch. Nous faisons l'hypothèse que le progéniteur basal qui n'hérite pas de NUMB, a une capacité proliférative supérieure aux progéniteurs apicaux. Pour la première fois, nous suggérons que les progéniteurs rétiniens ne sont pas équipotents. Ces travaux ont permis d'identifier un nouveau régulateur de l’orientation du fuseau mitotique, et d'élucider la régulation de la localisation cortico-latérale de LGN dans les progéniteurs rétiniens des vertébrés. Ils suggèrent que SAPCD2 et LGN interagissent différemment et changent de rôle au cours de la rétinogenèse. Ces découvertes contribuent à mieux comprendre les mécanismes moléculaires et cellulaires qui contrôlent la taille du lignage neuronal et régulent la formation de la diversité cellulaire au cours du développement du système nerveux central des vertébrés. / The control of cell division orientation is an integral processing during asymmetric cell division, a critical process ensuring cell diversity by asymmetrically distributing cell fate determinants between daughter cells. Cell fate determinants in invertebrate model organisms such as the C. elegans nematode and Drosophila fruit fly have been well characterized, and genetic analyses in these organisms has identified the evolutionarily conserved ternary protein complex Gai-LGN-NuMA as essential molecules involved in mitotic spindle orientation, as well as the polarity protein complex PAR3-PAR6-aPKC. Precisely how the Gai-LGN-NuMA complex achieves proper sub-cellular localization in vertebrate neural progenitors to induce planar cell division remains unclear. We used the developing vertebrate retina as a model system to study the role of cell division orientation in cell fate decisions. We have previously demonstrated a link between cell division orientation and daughter cell outcome in neural retina. Specifically, vertical cell divisions have a tendency to give rise to asymmetric pairs of daughter cells, and appear in later stages of retinogenesis. We wished to elucidate the mechanism underlying the switch from planar to vertical cell divisions over time during the neurogenic vs. proliferative developmental phases of retinogenesis. With our collaborators from the University of Toronto in the lab of Dr Stéphane Angers, we identified a novel Gai, LGN and PAR3 interacting protein, named SAPCD2 (suppressor APC domain containing 2). SAPCD2 is a poorly characterized protein, but known to be expressed in a cell cycle-dependent manner with higher expression during mitosis and elevated expression in many human cancers. We first analyzed Sapcd2 and Lgn expression in the developing retina, and found strong expression during proliferative phases, with its subcellular localization dependent on mitotic phase and developmental stage. During mitoses at P0 (birth), SAPCD2 and LGN display complementary localization with an apical or cortico-lateral enrichment, respectively, suggestive of a role in planar cell division induction. However, at E14.5, SAPCD2 and LGN have a highly similar localization, independent of spindle orientation, suggesting different roles during retinal development. We then analyzed mitotic spindle orientation in Sapcd2 and Sapcd2/Lgn DKO mice at E14.5 and P0, and Lgn mutant mice studied in parallel by Dre Marine Lacomme, post-doc in the Cayouette lab. In the absence of Sapcd2, vertical divisions drastically increased, whereas in the absence of Lgn, horizontal cell divisions increased. To test if this reorientation affects cell fate outcome, we analyzed the lineage of individual progenitor cells. As expected, in absence of Sapcd2, we observed a drastic increase in terminal asymmetric cell divisions, leading to two different neurons; whereas in the absence of Lgn, we observed an increase in terminal symmetric cell divisions, leading to two photoreceptors. Mechanistically, we showed that SAPCD2 negatively regulates LGN cortical localization, by competing with NuMA for its binding. In Lgn;Sapcd2 DKO mice, the mitotic spindle reorientation phenotype is even more drastic, containing almost exclusively vertical cell divisions, combined with an increase of proliferation and non-apical mitoses. This leads to a drastic expansion of the neuronal population, which forms an extra-layer containing many different retinal cell types. This over-proliferation could be due to the increase of vertical cell divisions, leading to an asymmetrical distribution of cell fate determinant, NUMB, an antagonist of Notch, between daughter cells. We hypothesize that the retinal basal progenitor, without NUMB, has a higher proliferative potential than the apical progenitor. Contrary to previous studies, this suggests that retinal progenitors are not equipotent. This work identifies a new regulator of mitotic spindle orientation and clarifies the sub-cellular localization of the LGN-NuMA complex. Our results also suggest that SAPCD2 and LGN change their role and the way they interact throughout the course of retinogenesis. This research contributes to an understanding of both how neural number is regulated, and how cell diversity is generated during vertebrate central nervous system development.
17

A novel non-canonical WNT pathway regulates the asymmetric b cell division in Caenorhabditis elegans

Wu, Mingfu January 1900 (has links)
Doctor of Philosophy / Department of Biology / Michael A. Herman / The polarities of several cells that divide asymmetrically during C. elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, which divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that the canonical Wnt pathway components are not involved in the control of B cell polarity. However, POP-1/Tcf is involved and asymmetrically distributed to B daughter nuclei. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP components and have determined that many of them appear to be involved in the regulation of B cell polarity and POP-1 asymmetric distribution to B daughter nuclei. Thus a non-canonical Wnt pathway, which is different from other Wnt pathways in C. elegans, but similar to the PCP pathways, appears to regulate B cell polarity. Molecular mechanisms of this PCP pathway were also investigated. We determined that LIN-17/Fz is asymmetrically distributed to the B cell cortex prior to, during, and after, division. Furthermore, the asymmetric localization of LIN-17::GFP is controlled by LIN-44/Wnt and MIG-5/Dsh. The cysteine rich domain (CRD), seven trans-membrane domain and KTXXXW motif of LIN-17 are required for LIN-17 to rescue lin-17, while only seven trans-membrane domains and KTXXXW motif are required for LIN-17 asymmetric localization. MIG-5::GFP asymmetrically localized to the B cell prior to and after division in a LIN-17/Fz dependent manner. We examined the functions of these MIG-5 domains. The DEP domain is required for MIG-5 membrane association, while the PDZ domain is responsible for different levels of MIG-5 in the B daughters. The DEP and PDZ domain are required to rescue B cell polarity defect of mig-5 males, while the DIX domain is not that important. In summary, a novel PCP-like pathway, in which LIN-17 and MIG-5 are asymmetrically localized, is conserved in C. elegans and involved in the regulation of B cell polarity.
18

Etude des mécanismes régissant les divisions symétriques et asymétriques dans les cellules souches musculaires squelettiques / Investigation of mechanisms regulating symmetric and asymmetric cell divisions in skeletal muscle stem cells

Yennek, Siham 25 September 2015 (has links)
Pendant la régénération musculaire, les cellules souches musculaires (dites satellites) prolifèrent de manière symétrique et asymétrique. La ségrégation non aléatoire des brins d'ADN est un mécanisme associé à la division asymétrique, souvent en lien avec des destins cellulaires distincts. Quand ce phénomène apparaît et comment il est régulé durant la régénération musculaire sont des points clés sur lesquels je me suis focalisée durant ma thèse. Afin d'étudier le rôle de signaux extracellulaires dans les décisions du type de division, nous avons utilisé des micropatrons de motifs symétrique et asymétrique recouverts de matrice extracellulaire. Nous avons alors montré que les fréquences de divisions asymétriques peuvent être modulées selon la forme du motif. En outre, nous décrivons une fenêtre de temps in vivo au cours de la régénération musculaire où une sous population de cellules satellites peut passer d'une division symétrique à asymétrique. Une analyse transcriptionnelle de ces cellules a permis d'identifier des gènes candidats potentiellement impliqués dans la régulation de cette transition. Nous avons testé l'effet de quelques protéines associées à ces gènes incorporées dans des niches artificielles 2D. Des données préliminaires suggérèrent que des signaux extrinsèques (protéine de la matrice extracellulaire et rigidité du substrat) combinés à une signalisation intracellulaire peuvent réguler la balance entre prolifération et différentiation. L'ensemble de ces données de thèse montre l'importance d'un dialogue entre le microenvironnement et les signaux intracellulaires dans la régulation du comportement des cellules souches. / During muscle regeneration, muscle stem (satellite) cells proliferate symmetrically and asymmetrically. Non-random segregation of old and new template DNA strands (NRDS) is one mechanism associated with an asymmetric cell division, and this is often linked with distinct daughter cell fates. How this frequency is modulated and when during tissue remodelling are key questions that are the focus of my thesis project. To address the role of extrinsic cues in NRDS and cell fate decisions, we used micropatterns coated with extracellular matrix and designed with symmetric and asymmetric topological motifs. We show that the frequency of NRDS and transcription factors asymmetry (Pax7, stem; Myogenin, differentiated) can be modulated depending on the topology of the adhesion cues of the micropattern. Moreover, we show that a temporal switch occurs in vivo during early muscle regeneration from symmetric to asymmetric DNA segregation in a subpopulation of satellite cells. Gene expression profiling of symmetrically and asymmetrically dividing cells allowed the identification of candidate regulators that might impinge on this regulatory transition. Some candidate genes were assayed in a high throughput screen that was on 2D artificial stem-cell niches. Preliminary data show that extrinsic cues (ECM protein and substrate stiffness) combined with signalling pathways can regulate the balance between proliferation and differentiation in a context dependent manner. Taken together, this thesis project shows that the interplay between microenvironment and intracellular signalling impacts on the regulation of stem cell behaviour.
19

Functional characterization of asymmetric cell division associated genes in hematopoietic stem cells and bone marrow failure syndromes

Chan, Derek January 2020 (has links)
Hematopoietic stem cells (HSCs) are critical to the development of the hematopoietic system during ontogeny and maintaining hematopoiesis under steady-state. Several genes implicated in asymmetric cell division (ACD) have been found to influence HSC self-renewal in normal hematopoiesis and various leukemias. From a separate survey of genes associated with ACD, I now present the results from dedicated functional studies on two genes – Arhgef2 and Staufen1 – in HSCs and identify their potential contributions to benign hematopoietic disorders. Specifically, I present evidence that demonstrates a conserved role of Arhgef2 in orienting HSC division, the loss of which leads to HSC exhaustion that may underlie and contribute to the pathogenesis of Shwachman-Diamond syndrome. I also identify Staufen1 as a critical RNA-binding protein (RBP) in HSC function, downregulation of which elicits expression signatures consistent with clinical anemias reminiscent of aplastic anemia and/or paroxysmal nocturnal hemoglobinuria. I end by reviewing how RBPs function in HSCs and discuss future research directions that could further elucidate how bone marrow failure syndromes arise at the stem cell level. / Thesis / Doctor of Philosophy (PhD)
20

Identification de régulateurs de la voie de signalisation du suppresseur tumoral PAR-4/LKB1 chez C. elegans

Descoteaux, Catherine 07 1900 (has links)
Le gène par-4 code pour une kinase à sérine/thréonine très conservée qui régule la polarisation précoce et la division cellulaire asymétrique de l’embryon de C. elegans. Une mutation de par-4 entraîne la létalité embryonnaire en perturbant trois processus: la ségrégation asymétrique des déterminants cellulaires, la régulation asynchrone de la progression du cycle cellulaire et la contractilité du réseau d’actomyosine. Pour identifier des régulateurs des voies de signalisation de PAR-4, nous avons procédé à un criblage pour des suppresseurs de la létalité embryonnaire associée à une mutation de par-4. Nous avons identifié 6 gènes qui codent pour des homologues conservés avec des activités définies telles que la phosphorylation, l’ubiquitination, la protéolyse et l’échafaudage. En employant l’imagerie quantitative pour suivre des événements cellulaires dépendants de PAR-4, nous avons déterminé quels processus sont contrôlés par chaque suppresseur durant le développement embryonnaire de C. elegans. Des analyses moléculaires de ces suppresseurs ont révélé des détails sur le mécanisme par lequel PAR-4 régule la polarisation cellulaire et promeut la division cellulaire asymétrique. / The gene lkb1 codes for a highly conserved serine/threonine kinase. The orthologue of lkb1 in the nematode Caeonorhabditis elegans, termed par-4, regulates early polarization and asymmetric cell division in the embryo. A mutation in par-4 causes embryonic lethality by perturbing three main cellular processes: asymmetric segregation of cell fate determinants, asynchronic regulation of cell cycle progression and contractility of the actomyosin network. To identify regulators of the PAR-4/LKB1-dependent pathways, we performed a screen for suppressors of the embryonic lethality associated with a mutation in par-4. We identified 6 genes that have conserved homologs with defined activities including protein phosphorylation, ubiquitination, proteolysis and scaffolding. We used quantitative imaging of specific PAR-4-dependent cellular events to determine which of these are controlled by each suppressor during early C. elegans embryonic development. Molecular analysis of these suppressors revealed details on the mechanism through which PAR-4 regulates cell polarization and promotes asymmetric cell division.

Page generated in 0.1918 seconds