• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PERFORMANCE OF COUNTING RULES FOR PRIMARY USER DETECTION

Ahsant, Babak 01 August 2015 (has links) (PDF)
In this dissertation we consider the problem of cooperative sensing for secondary user access to primary user spectrum in cognitive radio systems. Using a fusion center or an access point, the cooperative users decide on the availability of spectrum for their use. Both Neyman-Pearson and Bayes criterion are considered for performance assessment. Our work on the asymptotic performance of counting rules with a very large number of sensors in decentralized detection problem shows that majority logic fusion rule has the same order of performance when compared to the best fusion rule based on the binary decisions received from the observing sensors in a network. In cognitive radio context, very large number of sensors may not be realistic and hence we would like to examine the performance of majority logic and counting rules involving a finite and small number of sensors. Uniformly most powerful test for decentralized detection for testing parameter θ when the observation is a sample from uniform (0,θ) distribution is investigated and it is shown that OR rule has the best performance among all counting rules in error free channel. The numerical study for reporting channel as a binary symmetric channel (BSC) with probability of bit error is also investigated and the results show that 2-out-of-5 or 2-out-of-10 has better performance among other k-out-of-n rules, whenever OR rule is not able to provide a probability of false alarm at the sensor, that lies over (0,1) at a given probability of bit error.
2

Analysis of the Asymptotic Performance of Turbo Codes

Baligh, Mohammadhadi January 2006 (has links)
Battail [1989] shows that an appropriate criterion for the design of long block codes is the closeness of the normalized weight distribution to a Gaussian distribution. A subsequent work shows that iterated product of single parity check codes satisfy this criterion [1994]. Motivated by these earlier works, in this thesis, we study the effect of the interleaver on the performance of turbo codes for large block lengths, $N\rightarrow\infty$. A parallel concatenated turbo code that consists of two or more component codes is considered. We demonstrate that for $N\rightarrow\infty$, the normalized weight of the systematic $\widehat{w_1}=\displaystyle\frac{w_1}{\sqrt{N}}$, and the parity check sequences $\widehat{w_2}=\displaystyle\frac{w_2}{\sqrt{N}}$ and $\widehat{w_3}=\displaystyle\frac{w_3}{\sqrt{N}}$ become a set of jointly Gaussian distributions for the typical values of $\widehat{w_i},i=1,2,3$, where the typical values of $\widehat{w_i}$ are defined as $\displaystyle\lim_{N\rightarrow\infty}\frac{\widehat{w_i}}{\sqrt{N}}\neq 0,1$ for $i=1,2,3$. To optimize the turbo code performance in the waterfall region which is dominated by high-weight codewords, it is desirable to reduce $\rho_{ij}$, $i,j=1,2,3$ as much as possible, where $\rho_{ij}$ is the correlation coefficient between $\widehat{w_i}$ and $\widehat{w_j}$. It is shown that: (i)~$\rho_{ij}>0$, $i,j=1,2,3$, (ii)~$\rho_{12},\rho_{13}\rightarrow 0$ as $N\rightarrow\infty$, and (iii)~$\rho_{23}\rightarrow 0$ as $N\rightarrow\infty$ for "almost" any random interleaver. This indicates that for $N\rightarrow\infty$, the optimization of the interleaver has a diminishing effect on the distribution of high-weight error events, and consequently, on the error performance in the waterfall region. We show that for the typical weights, this weight distribution approaches the average spectrum defined by Poltyrev [1994]. We also apply the tangential sphere bound (TSB) on the Gaussian distribution in AWGN channel with BPSK signalling and show that it performs very close to the capacity for code rates of interest. We also study the statistical properties of the low-weight codeword structures. We prove that for large block lengths, the number of low-weight codewords of these structures are some Poisson random variables. These random variables can be used to evaluate the asymptotic probability mass function of the minimum distance of the turbo code among all the possible interleavers. We show that the number of indecomposable low-weight codewords of different types tend to a set of independent Poisson random variables. We find the mean and the variance of the union bound in the error floor region and study the effect of expurgating low-weight codewords on the performance. We show that the weight distribution in the transition region between Poisson and Gaussian follows a negative binomial distribution. We also calculate the interleaver gain for multi-component turbo codes based on these Poisson random variables. We show that the asymptotic error performance for multi-component codes in different weight regions converges to zero either exponentially (in the Gaussian region) or polynomially (in the Poisson and negative binomial regions) with respect to the block length, with the code-rate and energy values close to the channel capacity.
3

Analysis of the Asymptotic Performance of Turbo Codes

Baligh, Mohammadhadi January 2006 (has links)
Battail [1989] shows that an appropriate criterion for the design of long block codes is the closeness of the normalized weight distribution to a Gaussian distribution. A subsequent work shows that iterated product of single parity check codes satisfy this criterion [1994]. Motivated by these earlier works, in this thesis, we study the effect of the interleaver on the performance of turbo codes for large block lengths, $N\rightarrow\infty$. A parallel concatenated turbo code that consists of two or more component codes is considered. We demonstrate that for $N\rightarrow\infty$, the normalized weight of the systematic $\widehat{w_1}=\displaystyle\frac{w_1}{\sqrt{N}}$, and the parity check sequences $\widehat{w_2}=\displaystyle\frac{w_2}{\sqrt{N}}$ and $\widehat{w_3}=\displaystyle\frac{w_3}{\sqrt{N}}$ become a set of jointly Gaussian distributions for the typical values of $\widehat{w_i},i=1,2,3$, where the typical values of $\widehat{w_i}$ are defined as $\displaystyle\lim_{N\rightarrow\infty}\frac{\widehat{w_i}}{\sqrt{N}}\neq 0,1$ for $i=1,2,3$. To optimize the turbo code performance in the waterfall region which is dominated by high-weight codewords, it is desirable to reduce $\rho_{ij}$, $i,j=1,2,3$ as much as possible, where $\rho_{ij}$ is the correlation coefficient between $\widehat{w_i}$ and $\widehat{w_j}$. It is shown that: (i)~$\rho_{ij}>0$, $i,j=1,2,3$, (ii)~$\rho_{12},\rho_{13}\rightarrow 0$ as $N\rightarrow\infty$, and (iii)~$\rho_{23}\rightarrow 0$ as $N\rightarrow\infty$ for "almost" any random interleaver. This indicates that for $N\rightarrow\infty$, the optimization of the interleaver has a diminishing effect on the distribution of high-weight error events, and consequently, on the error performance in the waterfall region. We show that for the typical weights, this weight distribution approaches the average spectrum defined by Poltyrev [1994]. We also apply the tangential sphere bound (TSB) on the Gaussian distribution in AWGN channel with BPSK signalling and show that it performs very close to the capacity for code rates of interest. We also study the statistical properties of the low-weight codeword structures. We prove that for large block lengths, the number of low-weight codewords of these structures are some Poisson random variables. These random variables can be used to evaluate the asymptotic probability mass function of the minimum distance of the turbo code among all the possible interleavers. We show that the number of indecomposable low-weight codewords of different types tend to a set of independent Poisson random variables. We find the mean and the variance of the union bound in the error floor region and study the effect of expurgating low-weight codewords on the performance. We show that the weight distribution in the transition region between Poisson and Gaussian follows a negative binomial distribution. We also calculate the interleaver gain for multi-component turbo codes based on these Poisson random variables. We show that the asymptotic error performance for multi-component codes in different weight regions converges to zero either exponentially (in the Gaussian region) or polynomially (in the Poisson and negative binomial regions) with respect to the block length, with the code-rate and energy values close to the channel capacity.
4

Analyse de performances en traitement d'antenne : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite / Performance analysis in array signal processing. : lower bounds on the mean square error and statistical resolution limit

El Korso, Mohammed Nabil 07 July 2011 (has links)
Ce manuscrit est dédié à l’analyse de performances en traitement d’antenne pour l’estimation des paramètres d’intérêt à l’aide d’un réseau de capteurs. Il est divisé en deux parties :– Tout d’abord, nous présentons l’étude de certaines bornes inférieures de l’erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l’étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d’observations). Puis, nous étudions d’autres bornes inférieures de l’erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l’erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).– Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c’est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une ”correcte” estimation des paramètres. Nous présentons quelques applications bien connues en traitement d’antenne avant d’étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d’hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d’observation multidimensionnels / This manuscript concerns the performance analysis in array signal processing. It can bedivided into two parts :- First, we present the study of some lower bounds on the mean square error related to the source localization in the near eld context. Using the Cramér-Rao bound, we investigate the mean square error of the maximum likelihood estimator w.r.t. the direction of arrivals in the so-called asymptotic area (i.e., for a high signal to noise ratio with a nite number of observations.) Then, using other bounds than the Cramér-Rao bound, we predict the threshold phenomena.- Secondly, we focus on the concept of the statistical resolution limit (i.e., the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct resolvability/parameter estimation.) We de ne and derive the statistical resolution limit using the Cramér-Rao bound and the hypothesis test approaches for the mono-dimensional case. Then, we extend this concept to the multidimensional case. Finally, a generalized likelihood ratio test based framework for the multidimensional statistical resolution limit is given to assess the validity of the proposed extension.

Page generated in 0.0797 seconds