Spelling suggestions: "subject:"atmospheric aerosol -- 1ieasurement"" "subject:"atmospheric aerosol -- remeasurement""
1 |
Toward the Complete Characterization of Atmospheric Organic Particulate Matter: Derivatization and Two-Dimensional Comprehensive Gas Chromatography/Time of Flight Mass Spectrometry as a Method for the Determination of Carboxylic AcidsBoris, Alexandra Jeanne 01 January 2012 (has links)
Understanding the composition of atmospheric organic particulate matter (OPM) is essential for predicting its effects on climate, air quality, and health. However, the polar oxygenated fraction (PO-OPM), which includes a significant mass contribution from carboxylic acids, is difficult to speciate and quantitatively determine by current analytical methods such as gas chromatography-mass spectrometry (GC-MS). The method of chemical derivatization and two-dimensional GC with time of flight MS (GC×GC/TOF-MS) was examined in this study for its efficacy in: 1) quantifying a high percentage of the total organic carbon (TOC) mass of a sample containing PO-OPM; 2) quantitatively determining PO-OPM components including carboxylic acids at atmospherically relevant concentrations; and 3) tentatively identifying PO-OPM components. Two derivatization reagent systems were used in this study: BF₃/butanol for the butylation of carboxylic acids, aldehydes, and acidic ketones, and BSTFA for the trimethylsilylation (TMS) of carboxylic acids and alcohols. Three α-pinene ozonolysis OPM filter samples and a set of background filter samples were collected by collaborators in a University of California, Riverside environmental chamber. Derivatization/GC×GC TOF-MS was used to tentatively identify some previously unidentified α-pinene ozonolysis products, and also to show the characteristics of all oxidation products determined. Derivatization efficiencies as measured were 40-70% for most butyl derivatives, and 50-58% for most trimethylsilyl derivatives. A thermal optical method was used to measure the TOC on each filter, and a value of the quantifiable TOC mass using a gas chromatograph was calculated for each sample using GC×GC separation and the mass-sensitive response of a flame ionization detector (FID). The TOC quantified using TMS and GC×GC-FID (TMS/TOCGC×GC FID) accounted for 15-23% of the TOC measured by the thermal-optical method. Using TMS and GC×GC/TOF-MS, 8.85% of the thermal optical TOC was measured and 48.2% of the TMS/TOCGC×GC-FID was semi-quantified using a surrogate standard. The carboxylic acids tentatively identified using TMS and GC×GC/TOF-MS accounted for 8.28% of the TOC measured by thermal optical means. GC×GC TOF-MS chromatograms of derivatized analytes showed reduced peak tailing due in part to the lesser interactions of the derivatized analytes with the stationary phase of the chromatography column as compared to the chromatograms of underivatized samples. The improved peak shape made possible the greater separation, quantification, and identification of high polarity analytes. Limits of detection using derivatization and GC×GC/TOF-MS were μL injected for a series of C2-C6 di-acids, cis-pinonic acid, and dodecanoic acid using both butylation and TMS. Derivatization with GC×GC/TOF-MS was therefore effective for determining polar oxygenated compounds at low concentrations, for determining specific oxidation products not previously identified in OPM, and also for characterizing the probable functional groups and structures of α-pinene ozonolysis products.
|
2 |
Investigation of Aerosol Optical and Chemical Properties Using Humidity Controlled Cavity Ring-Down SpectroscopyZhu, Xijing 04 December 2017 (has links)
Scientists have been observing a change in the climate since the beginning of the 20th century that cannot be attributed to any of the natural influences of the past. Natural and anthropogenic substances and processes perturb the Earth's energy budget, contributing to climate change. In particular, aerosols (particles suspended in air) have long been recognized to be important in processes throughout the atmosphere that affect climate. They directly influence the radiative balance of the Earth's atmosphere, affect cloud formation and properties, and are also key air pollutants that contribute to a variety of respiratory and cardiovascular diseases. Despite their importance, aerosol particles are less well-characterized than greenhouse gases with respect to their sources, temporal and spatial concentration distribution, and physical and chemical properties. This uncertainty is mainly caused by the variable and insufficiently understood sources, formation and transformation processes, and complex composition of atmospheric particles. Instruments that can precisely and accurately measure and characterize the aerosol physical and chemical properties are in great demand. Atmospheric relative humidity (RH) has a crucial impact on the particles' optical properties; the RH dependence of the particle extinction coefficient is an important parameter for radiative forcing and thus climate change modeling. In this work a Humidity-Controlled Cavity Ring-Down (HC-CRD) aerosol optical instrument is described and its ability to measure RH dependent extinction coefficients and related hygroscopicity parameters is characterized.
The HC-CRD is capable of simultaneously measuring the aerosol extinction coefficient at three wavelengths (λ = 355, 532, and 1064 nm) and three different RHs (typically 20%, 50%, and 80%). A range of chemicals and their mixtures were used to produce laboratory generated aerosols. Three mixture systems include one inorganic salts mixture system consisting of (NH4)2SO4, NH4HSO4, Na2SO4, NaHSO4 serve as surrogates of the ionic salts found in the atmosphere. Two organic mixture systems were investigated: mixtures of NaCl, D-glucose, sucrose, and glycine are benchmarks for compounds emitted from biomass burning. Finally, mixtures of (NH4)2SO4 (ammonium sulfate, AS) with a series of dicarboxylic acids including malonic acid, adipic acid, and azelaic acid are used as benchmarks to mimic urban pollutants.
The extinction coefficients were obtained as a function of RH from the HC-CRD measurements, from which optical growth factors f(RH) and γ(RH) values can be determined to examine their dependence on chemical composition. A volume mixing rule was used to calculate the effective refractive index of the binary substrate mixtures, since both size and composition change during water uptake. The SDA/FMC algorithm developed by O'Neill, et al. 2005 is used to extract the van de Hulst phase shift parameter (Ρeff) from three-wavelength measurements of extinction. The fine mode fraction of extinction (η) and fine mode effective radius (Reff) of laboratory generated aerosol particles can be then determined. An iterative algorithm was developed to retrieve the change in refractive index of particles as function of RH. The calculated Reff of aerosols at different RHs were used to obtain the physical size growth factor (gf), and κ(RH). The size changes as a function of water uptake describe the dependence of aerosol optical properties on chemical composition.
This work demonstrates the capability of conducting aerosol optical measurements using HC-CRD to determine the RH dependence of aerosol optical properties. The HC-CRD measurements combined with the SDA/FMC method to retrieve aerosol size for laboratory generated aerosols establish the connection between the optical properties and the aerosol particles' chemical compositions. It also underlines the importance and need for future investigation on the hygroscopic properties of atmospheric aerosols. This work is successfully developed a method that enables using the aerosols optical measurements to predict the compositions; it will greatly contribute to the atmospheric aerosol measurement and global climate modelling.
|
3 |
Development of a Nephelometry Camera and Humidity Controlled Cavity Ring-Down Transmissometer for the Measurement of Aerosol Optical PropertiesRadney, James Gregory 01 January 2012 (has links)
A Nephelometry camera (NephCam) and Humidity Controlled Cavity Ring-Down Transmissometer (HC-CRDT) were developed for the determination of aerosol optical properties. The NephCams use a reciprocal geometry relative to an integrating nephelometer; a diode laser illuminates a scattering volume orthogonal to a charge coupled device (CCD). The use of a CCD allows for measurement of aerosol scattering in 2 dimensions; scattering coefficients and size information can be extracted. The NephCam's optics were characterized during a set of imaging experiments to optimize the images collected by the camera. An aperture setting of 1.6 was chosen because it allowed for the most light intensity to reach the CCD - albeit with significant vignetting - and also had a constant modular transfer function (MTF) across the image; approximately 0.3. While this MTF value is approaching the minimum usable MTF of 0.2, other aperture settings did not exhibit constant MTF. While the effects of vignetting can be corrected in image post processing, the effects of non-constant MTF cannot. An optical response model was constructed to simulate images collected by the NephCams as a function of particle type and size. Good agreement between modeled and measured images was observed after the effects of contrast on image shape were considered. The image shapes generated by the model also pointed towards the use of polynomial calibration for particle sizes less than 400 nm as a result of multiple charge-to-size effects present from the sizing mechanism of the differential mobility analyzer. Initial calibration of the NephCams using size-selected dry Ammonium sulfate (AS) showed that calibration slopes are a function of particle size which is also in agreement with the model. Calibration slopes decreased as particle size increased to 400 nm; after 400 nm calibration slope oscillated around a common value. This effect is directly related to the forward shift of scattered intensity as particles grow in size and the collection efficiency of the NephCam as particle size increases. The single scattering albedo (SSA) of Nigrosin was calculated using the NephCam; extinction was measured by the HC-CRDT. Good agreement between the SSA and size was noticed for larger particle sizes; particles smaller than 200 nm in diameter over-measured the SSA of Nigrosin because of the multiple charge-to-size effect. In this size regime, light scattering by particles increases much more quickly than absorption; the presence of larger particles causes scattering to be artificially high. The HC-CRDT is a 4 channel, 3 wavelength instrument capable of measuring the extinction coefficients of aerosols at high (> 80%), low (< 10%) and ambient relative humidity. Extinction coefficients as a function of RH were determined for AS, NaNO3, NaCl, and Nigrosin; these particles represent surrogates of the strongly scattering ionic salts and black carbon, respectively. A model was developed to calculate the changes in refractive index and extinction coefficients of these water soluble particles as a function of RH; these particle types were chosen because core-shell morphologies could be avoided. Volume mixing, Maxwell-Garnett and partial molar refraction mixing rules were used to calculate effective refractive indices as a function of water uptake. Particle growth was calculated based upon the Kelvin equation. Measured and modeled results of f(RH) - relative change in extinction between high or ambient RH and dry RH - agree well for all particle types except Nigrosin. This disagreement is thought to stem directly from an incomplete parameter set for Nigrosin; growth parameters were assumed to be identical to NaNO3, density assumed to be 1 g/mL and molecular weight 202 g/mole, which may not be true in reality (different suppliers of Nigrosin quote different molecular weights). The NephCam was not used during these experiments, so the addition of a scattering measurement to better characterize the growth by Nigrosin is necessary. The f(RH) data for NaNO3 showed excellent agreement between measured and modeled data; however particle size information collected by an SMPS does not agree with the theory. This stems from the fact that NaNO3 does not show prompt deliquescence upon drying; instead an amorphous solid forms which exhibits a kinetically limited loss of water.
|
4 |
Retrieval of aerosol optical depth from MODIS data at 500 m resolution compared with ground measurement in the state of IndianaAlhaj Mohamad, Fahed 05 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Objective: "The purpose of this research is: Study the use of Moderate Resolution Imaging Spectroradiometer (MODIS) data in retrieving the aerosol optical depth (AOD) over Indiana State at high resolution of 500 meters. Examine the potential of using the resulted AOD data as an indicator of particulate air pollution by comparing the satellite derived AOD data with the ground measurements (provided from the continuous air monitors available over the study area). If an association should be found, AOD data would be used to map particulate matter (PM) concentration. Assess current and future ambient concentrations of air pollutants in the State of Indiana using the AOD."
|
Page generated in 0.1068 seconds