• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 3
  • Tagged with
  • 18
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetik des Protonen gekoppelten Elektronentransfers in Enzymkomplexen der Atmungskette

Bamann, Christian. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.
2

Isolierung und Charakterisierung der Atmungsketten-Superkomplexe aus Paracoccus denitrificans

Stroh, Anke. Unknown Date (has links)
Universiẗat, Diss., 2004--Frankfurt (Main).
3

Elektronentransfer zwischen Komplex III und IV der Atmungskette von Paracoccus denitrificans und Thermus thermophilus funktionelle und kinetische Charakterisierung der Interaktionen anhand von löslichen Fragmenten /

Janzon, Julia. Unknown Date (has links)
Universiẗat, Diss., 2007--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.
4

Effekte verschiedener Inhibitoren der mitochondrialen Atmungskette auf die hypoxische pulmonale Vasokonstriktion an isolierten Kaninchenlungen

Ahrens, Marit January 2008 (has links)
Zugl.: Giessen, Univ., Diss., 2008
5

Transkriptom- und proteomanalytische Charakterisierung der Small-colony-Variante von Staphylococcus aureus

Müller, Daniel. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bonn. / Erscheinungsjahr an der Haupttitelstelle: 2003.
6

Sensitivität von benignen und malignen Zellen gegenüber dem mitochondrialen Entkoppler 2,4-Dinitrophenol, gemessen mittels Mikrokalorimetrie und LDH-Aktivität / Sensitivity of benign and malignant cells to the mitochondrial uncoupler 2,4-dinitrophenol measured by microcalorimetry and LDH activity

Palm, Nicole January 2023 (has links) (PDF)
Die mitochondriale Entkopplung ist ein effektiver Weg, um die Thermogenese und basale metabolische Rate einer Zelle anzuheben. Im Versuchsaufbau mit malignen Zellen führte dies zu einer Apoptose. 2,4-DNP als spezifischer Entkoppler der Atmungskette zeigte in diesem Zusammenhang mittels LDH-Analysen an HACAT-, PA1-, BT20 und MDA-MB 231- Zellen eine dosisabhängige Wirkung auf die Zellproliferation in allen verwendeten Zelllinien, unter den verwendeten Tumorzellen am eindrucksvollsten bei den Ovarialkarzinom Zellen. Allen Zellarten gemeinsam war dabei eine Wachstumshemmung abhängig von der Länge der Inkubationszeit. Die mikrokalorimetrischen Analysen wurden an HACAT-, BT20- und MDA-MB 231- Zellen durchgeführt. Eine höhere 2,4-DNP-Konzentration führte dabei ebenfalls zu einer gesteigerten Wärmefreisetzung, wobei eine positive Korrelation zwischen Einwirkdauer und Wärmefreisetzung bestand. Eine signifikante Zytotoxizität ließ sich bei hohen DNP-Konzentrationen und bei langer Inkubationszeit in den PA1- und MDA-MB 231- Zelllinien nachweisen. MDA-MB 231- Zellen reagierten dabei besonders sensibel. In der aktuellen Tumortherapie bietet die Kombination von Alterationen der mitochondrialen und glykolytischen Abläufen neben den gängigen Behandlungsoptionen einen vielversprechenden Therapieansatz (8, 28). Durch den Einsatz von mitochondrialen Entkopplern als Ergänzung zu den herkömmlichen Therapieschemata könnte effektiv in den metabolischen Stoffwechsel der Zellen eingegriffen und neben der Tumorzellproliferation auch die Regression positiv beeinflusst werden. Das Ziel wäre, eine kontrollierte Apoptose bei möglichst wenigen systemischen Nebenwirkungen auszulösen. Hierzu werden im Rahmen der optimalen Dosisfindung für den Einsatz von 2,4-DNP jedoch weitere Versuchsansätze mit Inkubationszeiten von mindestens 48h benötigt. / Mitochondrial uncoupling is an effective way to raise the thermogenesis and basal metabolic rate of a cell. In the experimental setup with malignant cells, this led to apoptosis. In this context 2,4-DNP as a specific uncoupler of the respiratory chain showed a dose-dependent effect on cell proliferation in all cell lines used by means of LDH analyses on HACAT, PA1, BT20 and MDA-MB 231 cells. Among the used tumor cells this effect was most impressively documented in ovarian carcinoma cells. Common to all cell types was a growth inhibition dependent on the length of the incubation period. Microcalorimetric analyses were performed on HACAT, BT20, and MDA-MB 231 cells. A higher 2,4-DNP concentration also resulted in increased heat release, with a positive correlation between exposure time and heat release. Significant cytotoxicity was detected at high DNP concentrations and with long incubation times in the PA1 and MDA-MB 231 cell lines. MDA-MB 231 cells reacted particularly sensitively. In current tumor therapy, the combination of alterations of mitochondrial and glycolytic pathways offers a promising therapeutic approach in addition to current treatment options (8, 28). The use of mitochondrial uncouplers as an adjunct to conventional therapeutic regimens could effectively interfere with cell metabolism and positively influence regression in addition to tumor cell proliferation. The goal would be to induce controlled apoptosis with as few systemic side effects as possible. For this, however, further experimental approaches with incubation times of at least 48h are needed in the context of optimal dose finding for the use of 2,4-DNP.
7

Molekulare und biochemische Charakterisierung des mitochondrialen Translationsaktivators Cbs2p in Saccharomyces cerevisiae

Tzschoppe, Kathrin 10 September 2001 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist das Kerngen CBS2 aus Saccharomyces cerevisiae. Cbs2p wird gemeinsam mit Cbs1p spezifisch für die Translation der Cytochrom b (COB)-mRNA in den Mitochondrien benötigt. Die Untersuchungen konzentrierten sich auf die Charakterisierung funktionell wichtiger Bereiche im N- und C-terminalen Bereich des Proteins, den Nachweis von Protein-Protein Wechelwirkungen, die Assoziation von Cbs2p mit mitochondrialen Ribosomen und die Bedeutung des N-terminalen Bereiches für den Import von Cbs2p in die Mitochondrien. Die aminoterminalen 35 Aminosäuren (As) von Cbs2p genügen, um das Reporterprotein Gfp vollständig in die Mitochondrien zu rekrutieren. Dieses Ergebnis zeigt, dass der N-Terminus von Cbs2p den Import von Proteinen in die Mitochondrien vermitteln kann. Da ein N-terminal um 35 As verkürztes Cbs2-Protein ebenfalls noch in den Mitochondrien nachweisbar ist, besitzt Cbs2p wenigstens ein weiteres, vom N-Terminus unabhängiges, internes oder C-terminal lokalisiertes Importsignal für die Mitochondrien. Aufgrund genetischer Daten ist Abc1p ein potenzieller Interaktionspartner von Cbs2p. Es konnte gezeigt werden, dass eine physikalische Wechselwirkung zwischen beiden Proteinen stattfindet. Mittels Blauer Nativ-Gelelektrophorese wurde Cbs2p in einem höher molekularen Proteinkomplex nachgewiesen. Da Cbs2p in der Lage ist, in vitro Homomere zu bilden, sprechen die Daten dafür, das Cbs2p als Multimer in diesem Komplex vorliegt. Es konnte weiterhin gezeigt werden, dass der N-Terminus von Cbs2p eine essentielle Rolle bei der Homomerisierung des Proteins spielt. Die vorliegenden Ergebnisse erweitern das von Michaelis et al. (1991) entwickelte Modell der Wirkungsweise der Translationsaktivatoren Cbs1p und Cbs2p wie folgt: Cbs1p und Cbs2p sind mit der inneren Membran assoziiert. Beide Proteine könnten die COB-mRNA an die mitochondriale Innenmembran führen. Der Kontakt zwischen der COB-mRNA und der mitochondrialen Translationsmaschinerie könnte durch die Assoziation von Cbs2p mit mitochondrialen Ribosomen hergestellt werden. Nur an der Membran erlaubt die Prozessierungs- und Translationsmaschinerie die Reifung von COB-mRNA und die Synthese und Assemblierung von Cytochrom b. Das Vorliegen von Cbs2p in einem hoch molekularen Komplex und die physikalische Wechselwirkung mit Abc1p könnten ein Hinweis dafür sein, dass die Translation in räumlicher Nähe des Assemblierungsortes von Cytochrom b, dem bc1-Komplex, stattfindet.
8

Assemblierung der Cytochrom c Oxidase: Molekulare und biochemische Charakterisierung des mitochondrialen Sco1p aus Saccharomyces cerevisiae und homologer Proteine

Lode, Anja 10 September 2001 (has links) (PDF)
Diese Arbeit beschäftigt sich mit dem mitochondrialen Sco1-Protein der Hefe Saccharomyces cerevisiae sowie mit weiteren Vertretern der Sco-Proteinfamilie. Sco1p ist essenziell für die Assemblierung der Cytochrom c Oxidase (COX), dem terminalen Komplex der Atmungskette. Aufgrund von genetischen Daten wurde angenommen, dass es an der Insertion von Cu-Ionen in den COX-Komplex beteiligt ist. Dabei existieren zwei unterschiedliche Vorstellungen über seine Wirkweise: Einerseits könnte Sco1p als Cu-Chaperon selbst Cu-Ionen binden und anschließend auf die Cu-tragenden COX-Untereinheiten Cox1p und/oder Cox2p übertragen. Andererseits könnte es als Disulfidreduktase die in die Cu-Bindung involvierten Cysteinreste von Cox2p reduzieren und somit die Voraussetzung für eine Cu-Anheftung an Cox2p schaffen. In beiden Fällen wird den unter den Sco-Proteinen konservierten Aminosäuren Cystein(148), Cystein(152) und Histidin(239) eine Schlüsselrolle zugedacht. Es wurde gezeigt, dass diese Aminosäuren tatsächlich essenziell für die Funktion von Sco1p sind. Die Daten dieser Arbeit sprechen dafür, dass Sco1p als Cu-Chaperon fungiert: Sco1p zeigt keine Aktivität als Disulfidreduktase. Außerdem interagiert Sco1p mit Cox17p - dem Protein, das Cu-Ionen in die Mitochondrien importiert - und geht mit Cox2p eine Wechselwirkung ein. Im Rahmen der Interaktionsanalysen wurde weiterhin gezeigt, dass Sco1p homomere Komplexe ausbildet. Ein weiterer Schwerpunkt dieser Arbeit lag in Untersuchungen zum homologen Sco2p aus Saccharomyces cerevisiae, das im Gegensatz zu Sco1p nicht essenziell für eine funkionsfähige COX ist. Trotz seiner großen Ähnlichkeit ist Sco2p nicht in der Lage, die Funktion von Sco1p zu erfüllen. Im Rahmen dieser Arbeit konnt aber demonstriert werden, dass Sco2p zumindest teilweise Sco1p ersetzen kann. Somit kann für beide Proteine angenommen werden, dass sie überlappende Funktionen besitzen. Übereinstimmend wurde nachgewiesen, dass Sco2p - wie Sco1p - in der Lage ist, mit Cox17p und mit Cox2p zu interagieren und außerdem heteromere Komplexe mit Sco1p formiert. Es wurde ein Modell zur Wirkweise von Sco1p und Sco2p entwickelt.
9

Molekulare und biochemische Charakterisierung des mitochondrialen Translationsaktivators Cbs2p in Saccharomyces cerevisiae

Tzschoppe, Kathrin 17 July 2001 (has links)
Gegenstand der vorliegenden Arbeit ist das Kerngen CBS2 aus Saccharomyces cerevisiae. Cbs2p wird gemeinsam mit Cbs1p spezifisch für die Translation der Cytochrom b (COB)-mRNA in den Mitochondrien benötigt. Die Untersuchungen konzentrierten sich auf die Charakterisierung funktionell wichtiger Bereiche im N- und C-terminalen Bereich des Proteins, den Nachweis von Protein-Protein Wechelwirkungen, die Assoziation von Cbs2p mit mitochondrialen Ribosomen und die Bedeutung des N-terminalen Bereiches für den Import von Cbs2p in die Mitochondrien. Die aminoterminalen 35 Aminosäuren (As) von Cbs2p genügen, um das Reporterprotein Gfp vollständig in die Mitochondrien zu rekrutieren. Dieses Ergebnis zeigt, dass der N-Terminus von Cbs2p den Import von Proteinen in die Mitochondrien vermitteln kann. Da ein N-terminal um 35 As verkürztes Cbs2-Protein ebenfalls noch in den Mitochondrien nachweisbar ist, besitzt Cbs2p wenigstens ein weiteres, vom N-Terminus unabhängiges, internes oder C-terminal lokalisiertes Importsignal für die Mitochondrien. Aufgrund genetischer Daten ist Abc1p ein potenzieller Interaktionspartner von Cbs2p. Es konnte gezeigt werden, dass eine physikalische Wechselwirkung zwischen beiden Proteinen stattfindet. Mittels Blauer Nativ-Gelelektrophorese wurde Cbs2p in einem höher molekularen Proteinkomplex nachgewiesen. Da Cbs2p in der Lage ist, in vitro Homomere zu bilden, sprechen die Daten dafür, das Cbs2p als Multimer in diesem Komplex vorliegt. Es konnte weiterhin gezeigt werden, dass der N-Terminus von Cbs2p eine essentielle Rolle bei der Homomerisierung des Proteins spielt. Die vorliegenden Ergebnisse erweitern das von Michaelis et al. (1991) entwickelte Modell der Wirkungsweise der Translationsaktivatoren Cbs1p und Cbs2p wie folgt: Cbs1p und Cbs2p sind mit der inneren Membran assoziiert. Beide Proteine könnten die COB-mRNA an die mitochondriale Innenmembran führen. Der Kontakt zwischen der COB-mRNA und der mitochondrialen Translationsmaschinerie könnte durch die Assoziation von Cbs2p mit mitochondrialen Ribosomen hergestellt werden. Nur an der Membran erlaubt die Prozessierungs- und Translationsmaschinerie die Reifung von COB-mRNA und die Synthese und Assemblierung von Cytochrom b. Das Vorliegen von Cbs2p in einem hoch molekularen Komplex und die physikalische Wechselwirkung mit Abc1p könnten ein Hinweis dafür sein, dass die Translation in räumlicher Nähe des Assemblierungsortes von Cytochrom b, dem bc1-Komplex, stattfindet.
10

Assemblierung der Cytochrom c Oxidase: Molekulare und biochemische Charakterisierung des mitochondrialen Sco1p aus Saccharomyces cerevisiae und homologer Proteine

Lode, Anja 14 August 2001 (has links)
Diese Arbeit beschäftigt sich mit dem mitochondrialen Sco1-Protein der Hefe Saccharomyces cerevisiae sowie mit weiteren Vertretern der Sco-Proteinfamilie. Sco1p ist essenziell für die Assemblierung der Cytochrom c Oxidase (COX), dem terminalen Komplex der Atmungskette. Aufgrund von genetischen Daten wurde angenommen, dass es an der Insertion von Cu-Ionen in den COX-Komplex beteiligt ist. Dabei existieren zwei unterschiedliche Vorstellungen über seine Wirkweise: Einerseits könnte Sco1p als Cu-Chaperon selbst Cu-Ionen binden und anschließend auf die Cu-tragenden COX-Untereinheiten Cox1p und/oder Cox2p übertragen. Andererseits könnte es als Disulfidreduktase die in die Cu-Bindung involvierten Cysteinreste von Cox2p reduzieren und somit die Voraussetzung für eine Cu-Anheftung an Cox2p schaffen. In beiden Fällen wird den unter den Sco-Proteinen konservierten Aminosäuren Cystein(148), Cystein(152) und Histidin(239) eine Schlüsselrolle zugedacht. Es wurde gezeigt, dass diese Aminosäuren tatsächlich essenziell für die Funktion von Sco1p sind. Die Daten dieser Arbeit sprechen dafür, dass Sco1p als Cu-Chaperon fungiert: Sco1p zeigt keine Aktivität als Disulfidreduktase. Außerdem interagiert Sco1p mit Cox17p - dem Protein, das Cu-Ionen in die Mitochondrien importiert - und geht mit Cox2p eine Wechselwirkung ein. Im Rahmen der Interaktionsanalysen wurde weiterhin gezeigt, dass Sco1p homomere Komplexe ausbildet. Ein weiterer Schwerpunkt dieser Arbeit lag in Untersuchungen zum homologen Sco2p aus Saccharomyces cerevisiae, das im Gegensatz zu Sco1p nicht essenziell für eine funkionsfähige COX ist. Trotz seiner großen Ähnlichkeit ist Sco2p nicht in der Lage, die Funktion von Sco1p zu erfüllen. Im Rahmen dieser Arbeit konnt aber demonstriert werden, dass Sco2p zumindest teilweise Sco1p ersetzen kann. Somit kann für beide Proteine angenommen werden, dass sie überlappende Funktionen besitzen. Übereinstimmend wurde nachgewiesen, dass Sco2p - wie Sco1p - in der Lage ist, mit Cox17p und mit Cox2p zu interagieren und außerdem heteromere Komplexe mit Sco1p formiert. Es wurde ein Modell zur Wirkweise von Sco1p und Sco2p entwickelt.

Page generated in 0.0414 seconds