• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 3
  • Tagged with
  • 168
  • 168
  • 168
  • 168
  • 168
  • 168
  • 25
  • 21
  • 21
  • 20
  • 16
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

New methodology for optical sensing and analysis

Bakker, Jimmy W. P. January 2004 (has links)
This thesis describes the research I have done, and partly will do, during my time as a PhD student in the laboratory of Applied Optics at Linköping University. Due to circumstances beyond the scope of this book, this incorporates three quite different projects. The first two, involving gas sensing and measuring on paper with ellipsometry, have been discontinued, whereas the third one, measuring fluorescence with a computer screen and web camera, is in full progress and will be until I complete my studies. Thus the purpose of this work also has several aspects. Partly, it describes performed research and its results, as well as theoretical background. On the other hand, it provides practical and theoretical background necessary for future work. While the three projects are truly quite different, each of them has certain things in common with each of the other. This is certainly also true for the necessary theory. Two of them involve spectroscopic ellipsometry, for example, while another pair needs knowledge of color theory, etc. This makes it impossible to separate the projects, despite of their differences. Hopefully, these links between the different projects, connecting the different chapters, will make this work whole and consistent in its own way. / <p>Report code: LiU-TEK-LIC-200 4-19. On the day of the public defence the status of article I was: In press and the status of article III was: Manuscript and has a new title. The old title was Computer screen photo-assisted spectroscopic fluorimetry.</p>
92

Thermal properties of volume Bragg gratings and its implications on lasers

Tjörnhammar, Staffan January 2013 (has links)
This thesis contains the results of research on the spectral control of lasers, specifically, the thermal limitations of volume Bragg gratings (VBGs), employed as laser-cavity end mirrors. The investigations consisted of both experiments and numerical simulations. For the experiments, a diode-pumped Yb:KYW laser with a VBG that had an absorption coefficient of 2.8% cm-1, in the 1 μm spectral region, was constructed. The computer model comprised of a transfer-matrix model and a three-dimensional, finite element model, working together. The absorption of the reflected laser beam changed the reflecting properties of the VBG, which affected the laser’s stability and other performances. The primary effect was a broadening of the grating spectrum accompanied by decreased diffraction efficiency. The reduced reflectivity lead to a leakage of the radiation through the grating during lasing. Both the experiments and the simulations showed that the laser became successively more unstable when the power was increased. Also, the simulations showed that this increased sensitivity was due to a reshaping of the intensity distribution profile inside the grating, which, in turn, lead to a sharp reduction of the diffraction efficiency. For circulating powers above this limit, the laser output rolled off and the power was instead leaking out through the VBG. Furthermore, the simulations also showed that the power limit was highly dependent on the length of the employed VBG. For instance, a 2 mm long VBG could withstand approximately 9.5 times higher incident power than a 10 mm long one could. Also, it was found that the limit, expressed in the terms of the incident power, related approximately linearly to the size of the beam radius. / Denna licentiatavhandling innehåller forskningsresultat som behandlar spektral kontroll av lasrar, specifikt genom volymbraggitters (VBG) termiska begränsningar, då de används som speglar i laserkaviteter. Undersökningarna bestod av både experiment och simuleringar. För experimenten konstruerades en diod-pumpad Yb:KYW laser med ett VBG som hade en absorptionskoefficient på 2,8% cm-1, i våglängdsområdet kring en mikrometer. Datormodellen innefattade en modell av gitterstrukturen baserad på överföringsmatriser och en tredimensionell modell baserad på finita elementmetoden, för beräkning av värme-fördelningen. Absorption av den reflekterade laserstrålen ändrade volymbraggittrets reflekterande egenskaper, vilket i sin tur påverkade laserns stabilitet och dess prestanda. De huvudsakliga effekterna var en breddning av gittrets spektra och en minskad diffraktionsverkningsgrad. Både experimenten och simuleringarna visade att en laser blir successivt mer instabil när den optiska effekten ökar. Simuleringarna visade även att den ökade känsligheten berodde på en förändring av intensitetsfördelningen inuti gittret, vilket accelererade reduktionen av gittrets reflekterande förmåga. Uttryckt i mot gittret infallande effekt, har lasern en tydlig övre effektgräns. När den gränsen har uppnåtts leder vidare ökning av pumpeffekten i huvudsak till ökat läckage genom volymbraggittret, och inte till ökad uteffekt hos laserstrålen. Vidare visade simuleringarna också att en lasers effektgräns är starkt beroende av längden på det använda volymbraggittret. Till exempel tålde ett 2 mm långt gitter cirka 9,5 gånger högre infallande effekt än ett 10 mm långt gitter. Dessutom visade det sig att effektgränsen, uttryckt i infallande effekt, berodde approximativt linjärt på strålradiens storlek. / <p>QC 20130507</p>
93

Use of Coherent Manipulation to Quantify the Quantum Dot Performance

Littmann, Jan-Heinrich January 2023 (has links)
No description available.
94

Simulation and parameter estimation of spectrophotometric instruments  / Simulering och parameterestimering av spektrofotometriska instrument

Avramidis, Stefanos January 2009 (has links)
The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm.The paper and the graphics industries use two instruments with different optical geometry (d/0 and 45/0) to measure the quality of paper prints. The instruments have been reported to yield incompatible measurements and even rank samples differently in some cases, causing communication problems between these sectors of industry.A preliminary investigation concluded that the inter-instrument difference could be significantly influenced by external factors (background, calibration, heterogeneity of the medium). A simple methodology for eliminating these external factors and thereby minimizing the instrument differences has been derived. The measurements showed that, when the external factors are eliminated, and there is no fluorescence or gloss influence, the inter-instrument difference becomes small, depends on the instrument geometry, and varies systematically with the scattering, absorption, and transmittance properties of the sample.A detailed description of the impact of the geometry on the results has been presented regarding a large sample range. Simulations with the radiative transfer model DORT2002 showed that the instruments measurements follow the physical radiative transfer model except in cases of samples with extreme properties. The conclusion is that the physical explanation of the geometrical inter-instrument differences is based on the different degree of light permeation from the two geometries, which eventually results in a different degree of influence from near-surface bulk scattering. It was also shown that the d/0 instrument fulfils the assumptions of a diffuse field of reflected light from the medium only for samples that resemble the perfect diffuser but it yields an anisotropic field of reflected light when there is significant absorption or transmittance. In the latter case, the 45/0 proves to be less anisotropic than the d/0.In the process, the computational performance of the DORT2002 has been significantly improved. After the modification of the DORT2002 in order to include the 45/0 geometry, the Gauss-Newton optimization algorithm for the solution of the inverse problem was qualified as the most appropriate one, after testing different optimization methods for performance, stability and accuracy. Finally, a new homotopic initial-value algorithm for routine tasks (spectral calculations) was introduced, which resulted in a further three-fold speedup of the whole algorithm. / QC 20100707 / PaperOpt, Paper Optics and Colour
95

Generation and detection of entangled single-photon pairs

Habtezion, Gabriella Tesfamichael January 2024 (has links)
Quantum information technology is an emerging field with important applications such as quantum cryptography and teleportation, quantum imaging and lithography. These applications make use of single photons and pairs of entangled photons. In this work, we experimentally generate and attempt to detect the entangled photons. The entangled photon pairs are produced using a nonlinear crystal of beta bariumborate through a process of spontaneous parametric down-conversion (SPDC). Alignment necessary to detect the entangled photon pairs is implemented using a HeNe laser. The experimental results reveal key signatures of the down-converted photons: (i) energy conservation as the wave length of generated photons (810 nm) is two times larger than that of the photons used to optically pump SPDC (405 nm), which is shown by using a 10-nm band-pass filter centred around 810 nm; (ii) the angles between the two photons of a pair correspond to the configuration of momentum conservation calculated analytically;(iii) the photons arrived at the detectors within the jitter time of those; and (iv) orthogonal polarisation of down-converted photons (810 nm) with respect to pump photons (405 nm). These findings show the consequences of SPDC.
96

Modeling of optical microresonator frequency combs

Ekström, Michael January 2022 (has links)
An optical frequency comb is a structure of equidistant, coherent spectral components which can be thought of as a large array of individual phase-locked laser sources. Their utilization in precision spectroscopy garnering part of the 2005 Nobel prize, optical frequency combs constitute a relatively novel technology with a large number of potential and actual applications. The research interest grew further with the 2007 discovery of comb structures in microresonators enclosing a nonlinear Kerr medium pumped by an external continuous wave laser, offering both substantially wider combs and the prospect of chip-scale integration. In this thesis work, the modeling of frequency comb spectra generated through optical Kerr cavities is considered using both an Ikeda map and the mean-field Lugiato-Lefever equation to describe the intracavity field evolution. Derivations of these mathematical models are first reviewed alongside relevant physics. They are then treated analytically to constrain model parameters to regions of interest in the context of Kerr-comb dynamics. Finally, numerical parameter sweeps are conducted in both models with respect to the pump power and frequency detuning, where the Ikeda map is additionally examined in the high-energy regime not faithfully described by the Lugiato-Lefever equation. The produced phase diagrams reveal a complex landscape of dynamics including Turing patterns, temporal cavity solitons, breathers and chaos. Ikeda map parameters in the high-energy regime capable of supporting previously reported super energetic cavity solitons are also investigated. Lastly, the numerical simulation package developed for parameter sweeps is presented.
97

Generation and detection of non-classical photon states / Generation och detektion av icke-klassiska fotontillstånd

Stensson, Katarina January 2018 (has links)
This thesis intends to familiarize the reader with the concepts of photon statistics and correlations in quantum optics. Developing light sources that emit quantum states is central for the realization of quantum technologies. One important step in characterizing these sources is the measurement of field fluctuations and correlations, by coincidence measurements. The expectation value of a coincidence measurement, a simultaneous measurement of two intensities (or, more general, four fields), is represented by the fourth-order correlation function. The value of the correlation function, at zero delay between the detection of two photons, reveals important properties of the state to which they belonged, for example the fluctuations of the photon number. Since predictability is important for many applications, light sources emitting single photons are also characterized by the indistinguishability of consecutively emitted photons, or of two photons from separate emitters. In paper I we investigate blinking behaviour in quantum emitters, and its effect on the interference pattern and photon statistics with photons from two separate emitters. Blinking refers to an emitters transition into a non-emitting state, and subsequent transition back to an emitting state. We show that blinking can not be treated as linear loss, when measuring the fourth-order correlation function for two emitters in a Hong-Ou-Mandel setup. In general, a measurement of the fourth-order correlation function is robust to loss, which makes it a very practical tool. However, the relation between recorded coincidence counts and the correlation function is only direct in the limit of zero detection efficiency, and depends on the detection system. In paper II, we show that by adding a variable attenuation in the beam path, we can trace back to the ''true'' value of the correlation function at zero quantum efficiency. This method improves accuracy in correlation measurements by decreasing a systematic error at the expense of an increased statistical error, which is easier to handle, extending the use of coincidence methods to classical and non-classical multi-photon states. / <p>QC 20180517</p>
98

An Efficient and Accessible Empirical ValenceBond Implementation

van Hoorn, Bastiaan January 2024 (has links)
The Empirical Valence Bond (EVB) method has long been recognised as a reliable approach for the calculation of free energies of reactions in heterogeneous electrochemical environments. In spite of its established efficacy, existing implementations and protocols often pose challenges due to their tediousness or lack of transparency. This work introduces an open-source Python implementation of the EVB method, specifically designed to enhance accessibility and comprehension of the method making it highly suited for educational purposes. Recommendations are provided for integrating the methodology into the GROMACS application programming interface, to facilitate its integration into computational chemistry workflows and accellerating research. The program is demonstrated through various computations, including a short EVB study on the dissociation of \COt and tetraphenylporphyrin in the vicinity of a graphene sheet in water and dimethylformamide. Moreover, a novel analytical expression for computing the free energy profile is presented, showing promising agreement with the canonical discretised method.
99

Calibration of Coincidence Gamma Spectrometry Detector GeCo

Ivarsson Biebel, Ellen, Wallentin, Rasmus January 2024 (has links)
To verify nuclear weapon treaties, such as CTBT the ability to scientifically monitor treaty violations is of importance. One tool for monitoring nuclear weapons testing is the use of gamma ray spectrometry. A calibration on a multi detector element coincidence gamma spectrometer setup was performed from previously gathered experimental data. Data from one calibration sample and a blank sample were analyzed in this project. The first part consisted of energy, full width half maximum (FWHM) and efficiency calibrations, for each of the detectors. Spectra were created, showing the results in the different detectors. From the spectra, several radionuclides were identified, both background nuclides and nuclides from the calibration sample. To each peak, a Gaussian shaped curve was numerically fitted and the parameters were used to perform the calibrations. Efficiencies were calculated for the individual peaks, whereas the energy and FWHM calibrations resulted in linear relationships. During the second part of this project, coincident gamma-rays were investigated. The efficiency for a coincident decay in each detector pair was calculated. This was compared with the product of the singular efficiencies, and a correction term was introduced. Furthermore, the signal to noise ratio was compared for spectra created with different data sorting methods.
100

Majorana Representation in Quantum Optics : SU(2) Interferometry and Uncertainty Relations

Shabbir, Saroosh January 2017 (has links)
The algebra of SU(2) is ubiquitous in physics, applicable both to the atomic spin states and the polarisation states of light. The method developed by Majorana and Schwinger to represent pure, symmetric spin-states of arbitrary value as a product of spin-1/2 states is a powerful tool that allows for a great conceptual and practical simplification. Foremost, it allows the representation of a qudit on the same geometry as a qubit, i.e., the Bloch sphere. An experimental implementation of the Majorana representation in the realm of quantum optics is presented. The technique allows the projection of arbitrary quantum states from a coherent state input. It is also shown that the method can be used to synthesise arbitrary interference patterns with unit visibility, and without resorting to quantum resources. In this context, it is argued that neither the shape nor the visibility of the interference pattern is a good measure of quantumness. It is only the measurement scheme that allows for the perceived quantum behaviour. The Majorana representation also proves useful in delineating uncertainty limits of states with a particular spin value. Issues with traditional uncertainty relations involving the SU(2) operators, such as trivial bounds for certain states and non-invariance, are thereby resolved with the presented pictorial solution. / <p>QC 20170428</p>

Page generated in 0.1959 seconds