• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 16
  • 9
  • 1
  • Tagged with
  • 76
  • 37
  • 36
  • 36
  • 35
  • 23
  • 22
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tunnel Ionization in Strong Fields in atoms and molecules and its applications

Murray, Ryan January 2011 (has links)
We look at the theory of ionization of atoms and molecules in the presence of a strong laser field. The history of ionization of atoms is reviewed and the methods used to calculate the ionization rates are examined in detail. In particular the quasi-classical methods used to solve for atomic rates are examined in detail. Early work on the ionization of molecules is also examined. A new method of calculating ionization rates is developed which allows for clear, analytic descriptions of atoms and molecules in intense light fields. The results and implications of this new theory are also examined in both atoms and molecules. The results are compared against known analytic results in the case of atoms and against numerical computation for molecules. Finally, applications of the study of atoms and molecules in intense fields are examined. We show how processes such as high harmonic generation and laser induced electron diffraction occur in strong fields and give an overview of the current state of the art and likely goals for the future. The process of laser induced electron diffraction is given close examination and ways of optimizing the diffraction patterns are discussed. The use of two-color orthogonal fields is shown to greatly increase contrast and efficiency when the carrier phases are tuned correctly.
12

Attosecond Resolved Electron Wave Packet Dynamics in Helium

Hirisave Shivaram, Niranjan January 2013 (has links)
Electron dynamics in atoms and molecules occurs on a time-scale of attoseconds (10⁻¹⁸s). With the availability of strong field (∼ 10¹²- 10¹³ W cm⁻²) femtosecond (10⁻¹⁵s) laser pulses with electric fields that can reach and exceed the Coulomb field strength experienced by an electron in the ground state of an atom, it is now possible to generate even shorter pulses with durations on the order of attoseconds by the process of high-harmonic generation (HHG). In this dissertation, experiments to study electron dynamics on attosecond time-scales in a helium atom using attosecond pulses generated by HHG will be described. We use extreme-ultraviolet (XUV) attosecond pulse trains and strong femtosecond near-infrared (IR) laser pulses to excite and ionize helium atoms. We first discuss an experimental technique that allows us to quantify and reduce the detrimental effects of Gouy phase slip on attosecond XUV-IR experiments. We then discuss our experiments to study the dynamic behavior of electronic states in a strong field modified helium atom where we use attosecond pulses to explore the strong-field modified atomic landscape. Using the Floquet theory to interpret our experimental observations we measure the variation in quantum phase of interferences between different fourier components of Floquet states as the IR intensity is varied and as different ionization channels dominate, in real-time. Next, we briefly discuss quantum interferences between photo-electrons ionized from XUV excited states in helium using an IR field which is polarized orthogonal to the XUV polarization. We observe variation in angular distribution of photo-electrons as a function of XUV-IR time-delay. We then discuss a new technique to measure the time-of-birth of attosecond pulses using XUV+IR photo-ionization in helium as a measurement probe. Finally, experiments to study the evolution of XUV excited wave-packets in helium on a time-scale of 100's of femtoseconds with attosecond resolution will be described.
13

Probing Collective Multi-electron Effects with Few Cycle Laser Pulses

Shiner, Andrew 15 March 2013 (has links)
High Harmonic Generation (HHG) enables the production of bursts of coherent soft x-rays with attosecond pulse duration. This process arrises from the nonlinear interaction between intense infrared laser pulses and an ionizing gas medium. Soft x-ray photons are used for spectroscopy of inner-shell electron correlation and exchange processes, and the availability of attosecond pulse durations will enable these processes to be resolved on their natural time scales. The maximum or cutoff photon energy in HHG increases with both the intensity as well as the wavelength of the driving laser. It is highly desirable to increase the harmonic cutoff as this will allow for the generation of shorter attosecond pulses, as well as HHG spectroscopy of increasingly energetic electronic transitions. While the harmonic cutoff increases with laser wavelength, there is a corresponding decrease in harmonic yield. The first part of this thesis describes the experimental measurement of the wavelength scaling of HHG efficiency, which we report as lambda^(-6.3) in xenon, and lambda^(-6.5) in krypton. To increase the HHG cutoff, we have developed a 1.8 um source, with stable carrier envelope phase and a pulse duration of <2 optical cycles. The 1.8 um wavelength allowed for a significant increase in the harmonic cutoff compared to equivalent 800 nm sources, while still maintaing reasonable harmonic yield. By focusing this source into neon we have produced 400 eV harmonics that extend into the x-ray water window. In addition to providing a source of photons for a secondary target, the HHG spectrum caries the signature of the electronic structure of the generating medium. In krypton we observed a Cooper minimum at 85 eV, showing that photoionization cross sections can be measured with HHG. Measurements in xenon lead to the first clear observation of electron correlation effects during HHG, which manifest as a broad peak in the HHG spectrum centred at 100 eV. This thesis also describes several improvements to the HHG experiment including the development of an ionization detector for measuring laser intensity, as well as an investigation into the role of laser mode quality on HHG phase matching and efficiency.
14

Tunnel Ionization in Strong Fields in atoms and molecules and its applications

Murray, Ryan January 2011 (has links)
We look at the theory of ionization of atoms and molecules in the presence of a strong laser field. The history of ionization of atoms is reviewed and the methods used to calculate the ionization rates are examined in detail. In particular the quasi-classical methods used to solve for atomic rates are examined in detail. Early work on the ionization of molecules is also examined. A new method of calculating ionization rates is developed which allows for clear, analytic descriptions of atoms and molecules in intense light fields. The results and implications of this new theory are also examined in both atoms and molecules. The results are compared against known analytic results in the case of atoms and against numerical computation for molecules. Finally, applications of the study of atoms and molecules in intense fields are examined. We show how processes such as high harmonic generation and laser induced electron diffraction occur in strong fields and give an overview of the current state of the art and likely goals for the future. The process of laser induced electron diffraction is given close examination and ways of optimizing the diffraction patterns are discussed. The use of two-color orthogonal fields is shown to greatly increase contrast and efficiency when the carrier phases are tuned correctly.
15

Probing Collective Multi-electron Effects with Few Cycle Laser Pulses

Shiner, Andrew January 2013 (has links)
High Harmonic Generation (HHG) enables the production of bursts of coherent soft x-rays with attosecond pulse duration. This process arrises from the nonlinear interaction between intense infrared laser pulses and an ionizing gas medium. Soft x-ray photons are used for spectroscopy of inner-shell electron correlation and exchange processes, and the availability of attosecond pulse durations will enable these processes to be resolved on their natural time scales. The maximum or cutoff photon energy in HHG increases with both the intensity as well as the wavelength of the driving laser. It is highly desirable to increase the harmonic cutoff as this will allow for the generation of shorter attosecond pulses, as well as HHG spectroscopy of increasingly energetic electronic transitions. While the harmonic cutoff increases with laser wavelength, there is a corresponding decrease in harmonic yield. The first part of this thesis describes the experimental measurement of the wavelength scaling of HHG efficiency, which we report as lambda^(-6.3) in xenon, and lambda^(-6.5) in krypton. To increase the HHG cutoff, we have developed a 1.8 um source, with stable carrier envelope phase and a pulse duration of <2 optical cycles. The 1.8 um wavelength allowed for a significant increase in the harmonic cutoff compared to equivalent 800 nm sources, while still maintaing reasonable harmonic yield. By focusing this source into neon we have produced 400 eV harmonics that extend into the x-ray water window. In addition to providing a source of photons for a secondary target, the HHG spectrum caries the signature of the electronic structure of the generating medium. In krypton we observed a Cooper minimum at 85 eV, showing that photoionization cross sections can be measured with HHG. Measurements in xenon lead to the first clear observation of electron correlation effects during HHG, which manifest as a broad peak in the HHG spectrum centred at 100 eV. This thesis also describes several improvements to the HHG experiment including the development of an ionization detector for measuring laser intensity, as well as an investigation into the role of laser mode quality on HHG phase matching and efficiency.
16

Harmonic and electron generation from laser-driven plasma mirrors. / Génération d'harmoniques et de faisceaux d'électrons sur miroirs plasmas pilotés par laser.

Bocoum, Maïmouna 24 June 2016 (has links)
Dans cette thèse expérimentale, nous nous intéressons à la réponse non-linéaire d’un miroir plasma sous l’influence d’un laser d’intensité sous-relativiste (~10^18 W/cm^2), et de très courte durée (~30fs). Nous avons en particulier étudié la génération d’impulsions attosecondes (1as=10^(-18) s) et de faisceaux d’électrons en effectuant des expériences dites de « pompe-sonde » contrôlées. Un premier résultat important est l’observation d’une anti-corrélation entre l’émission X-UV attoseconde et l’accélération d’électron lorsque l’on change la longueur caractéristique du plasma, résultats confirmés par des simulations numériques. Un second résultat important concerne le diagnostique de l’expansion du plasma sous vide par « interférométrie en domaine spatial » (SDI), technique élaborée dans le cadre de cette thèse. Enfin nous discutons à deux reprises l’utilisation d’algorithmes de reconstruction de phase dans le domaine spatiale ou temporel.De manière plus générale, nous avons cherché à replacer ce travail de thèse dans un contexte scientifique plus général. En particulier, nous tentons de convaincre le lecteur qu’à travers l’intéraction laser-miroir plasma, il devient concevable de fournir un jour aux utilisateurs des sources peu onéreuses d’impulsions X-UV et de faisceaux d’électrons de résolutions temporelles inégalées. / The experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions.
17

Towards High-Flux Isolated Attosecond Pulses with a 200 TW CPA

Cunningham, Eric 01 January 2015 (has links)
Attosecond pulses have been developed as a means for investigating phenomena that proceed on the order of the atomic unit of time (24 as). Unfortunately, these extreme ultraviolet (XUV) pulses by themselves contain too few photons to initiate nonlinear dynamics or dress states in an attosecond pump--attosecond probe scheme. As a result, most attosecond experiments thus far have featured complementary near infrared (NIR) femtosecond lasers for instigating electron dynamics. In order to access the benefits of all-attosecond measurements and open attosecond physics to new fields of exploration, the photon flux of these pulses must be increased. One way to boost the attosecond pulse energy is to scale up the energy of the NIR pulse responsible for driving high-harmonic generation (HHG). With generalized double optical gating (GDOG), isolated attosecond pulses can be generated with multi-cycle laser systems, wherein the pulse energy can be boosted more easily than in the few-cycle laser systems required by other gating methods. At the Institute for the Frontier of Attosecond Science and Technology (IFAST), this scalability was demonstrated using a 350 mJ, 15 fs (10 TW) Ti:sapphire laser, which was used to generate a 100 nJ XUV continuum. This represented an order-of-magnitude improvement over typical attosecond pulse energies achievable by millijoule-level few-cycle lasers. To obtain the microjoule-level attosecond pulse energy required for performing all-attosecond experiments, the attosecond flux generated by the IFAST 10 TW system was still deficient by an order of magnitude. To this end, the laser system was upgraded to provide joule-level output energies while maintaining pulse compression to 15 fs, with a targeted peak power of 200 TW. This was accomplished by adding an additional Ti:sapphire amplifier to the existing 10 TW system and implementing a new pulse compression system to accommodate the higher pulse energy. Because this system operated at a 10 Hz repetition rate, stabilization of the carrier-envelope phase (CEP) -- important for controlling attosecond pulse production -- could not be achieved using traditional methods. Therefore, a new scheme was developed, demonstrating the first-ever control of CEP in a chirped-pulse amplifier (CPA) at low repetition rates. Finally, a new variation of optical gating was proposed as a way to improve the efficiency of the attosecond pulse generation process. This method was also predicted to allow for the generation of isolated attosecond pulses with longer driving laser pulses, as well as the extension of the high-energy photon cut-off of the XUV continuum.
18

From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

Wang, He January 1900 (has links)
Doctor of Philosophy / Department of Physics / Zenghu Chang / The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.
19

Attosecond Probing of Electron Dynamics in Atoms and Molecules using Tunable Mid-Infrared Drivers

Gorman, Timothy Thomas January 2018 (has links)
No description available.
20

Attosecond Pulse Generation and Characterization

Chirla, Razvan Cristian 19 October 2011 (has links)
No description available.

Page generated in 0.0302 seconds