• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The synthesizer programming problem: improving the usability of sound synthesizers

Shier, Jordie 15 December 2021 (has links)
The sound synthesizer is an electronic musical instrument that has become commonplace in audio production for music, film, television and video games. Despite its widespread use, creating new sounds on a synthesizer - referred to as synthesizer programming - is a complex task that can impede the creative process. The primary aim of this thesis is to support the development of techniques to assist synthesizer users to more easily achieve their creative goals. One of the main focuses is the development and evaluation of algorithms for inverse synthesis, a technique that involves the prediction of synthesizer parameters to match a target sound. Deep learning and evolutionary programming techniques are compared on a baseline FM synthesis problem and a novel hybrid approach is presented that produces high quality results in less than half the computation time of a state-of-the-art genetic algorithm. Another focus is the development of intuitive user interfaces that encourage novice users to engage with synthesizers and learn the relationship between synthesizer parameters and the associated auditory result. To this end, a novel interface (Synth Explorer) is introduced that uses a visual representation of synthesizer sounds on a two-dimensional layout. An additional focus of this thesis is to support further research in automatic synthesizer programming. An open-source library (SpiegeLib) has been developed to support reproducibility, sharing, and evaluation of techniques for inverse synthesis. Additionally, a large-scale dataset of one billion sounds paired with synthesizer parameters (synth1B1) and a GPU-enabled modular synthesizer (torchsynth) are also introduced to support further exploration of the complex relationship between synthesizer parameters and auditory results. / Graduate
2

Tvorba zvuku v technologii VST / Sound Creation Using VST

Švec, Michal January 2014 (has links)
This diploma thesis deals with digital sound synthesis. The main task was to design and implement new sound synthesizer. Created tool uses different approaches to the sound synthesis, so it can be described as a hybrid. Instrument design was inspired by existing audio synthesizers. For implementation, C++ language and VST technology from Steinberg are used. As an extension, a module, that can process voice or text input and then build a MIDI file with melody (which can be interpreted with using any synthesizer) was designed and implemented. For this module, Python language is used. For the synthesizer, a simple graphical user interface was created.
3

Speech Analysis for Processing of Musical Signals / Speech Analysis for Processing of Musical Signals

Mészáros, Tomáš January 2015 (has links)
Hlavním cílem této práce je obohatit hudební signály charakteristikami lidské řeči. Práce zahrnuje tvorbu audioefektu inspirovaného efektem talk-box: analýzu hlasového ústrojí vhodným algoritmem jako je lineární predikce, a aplikaci odhadnutého filtru na hudební audio-signál. Důraz je kladen na dokonalou kvalitu výstupu, malou latenci a nízkou výpočetní náročnost pro použití v reálném čase. Výstupem práce je softwarový plugin využitelný v profesionálních aplikacích pro úpravu audia a při využití vhodné hardwarové platformy také pro živé hraní. Plugin emuluje reálné zařízení typu talk-box a poskytuje podobnou kvalitu výstupu s unikátním zvukem.
4

Controllable music performance synthesis via hierarchical modelling

Wu, Yusong 08 1900 (has links)
L’expression musicale requiert le contrôle sur quelles notes sont jouées ainsi que comment elles se jouent. Les synthétiseurs audios conventionnels offrent des contrôles expressifs détaillés, cependant au détriment du réalisme. La synthèse neuronale en boîte noire des audios et les échantillonneurs concaténatifs sont capables de produire un son réaliste, pourtant, nous avons peu de mécanismes de contrôle. Dans ce travail, nous introduisons MIDI-DDSP, un modèle hiérarchique des instruments musicaux qui permet tant la synthèse neuronale réaliste des audios que le contrôle sophistiqué de la part des utilisateurs. À partir des paramètres interprétables de synthèse provenant du traitement différentiable des signaux numériques (Differentiable Digital Signal Processing, DDSP), nous inférons les notes musicales et la propriété de haut niveau de leur performance expressive (telles que le timbre, le vibrato, l’intensité et l’articulation). Ceci donne naissance à une hiérarchie de trois niveaux (notes, performance, synthèse) qui laisse aux individus la possibilité d’intervenir à chaque niveau, ou d’utiliser la distribution préalable entraînée (notes étant donné performance, synthèse étant donné performance) pour une assistance créative. À l’aide des expériences quantitatives et des tests d’écoute, nous démontrons que cette hiérarchie permet de reconstruire des audios de haute fidélité, de prédire avec précision les attributs de performance d’une séquence de notes, mais aussi de manipuler indépendamment les attributs étant donné la performance. Comme il s’agit d’un système complet, la hiérarchie peut aussi générer des audios réalistes à partir d’une nouvelle séquence de notes. En utilisant une hiérarchie interprétable avec de multiples niveaux de granularité, MIDI-DDSP ouvre la porte aux outils auxiliaires qui renforce la capacité des individus à travers une grande variété d’expérience musicale. / Musical expression requires control of both what notes are played, and how they are performed. Conventional audio synthesizers provide detailed expressive controls, but at the cost of realism. Black-box neural audio synthesis and concatenative samplers can produce realistic audio, but have few mechanisms for control. In this work, we introduce MIDI-DDSP a hierarchical model of musical instruments that enables both realistic neural audio synthesis and detailed user control. Starting from interpretable Differentiable Digital Signal Processing (DDSP) synthesis parameters, we infer musical notes and high-level properties of their expressive performance (such as timbre, vibrato, dynamics, and articulation). This creates a 3-level hierarchy (notes, performance, synthesis) that affords individuals the option to intervene at each level, or utilize trained priors (performance given notes, synthesis given performance) for creative assistance. Through quantitative experiments and listening tests, we demonstrate that this hierarchy can reconstruct high-fidelity audio, accurately predict performance attributes for a note sequence, independently manipulate the attributes of a given performance, and as a complete system, generate realistic audio from a novel note sequence. By utilizing an interpretable hierarchy, with multiple levels of granularity, MIDI-DDSP opens the door to assistive tools to empower individuals across a diverse range of musical experience.

Page generated in 0.053 seconds