• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 2
  • Tagged with
  • 16
  • 11
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Satisfiability and Optimization in Periodic Traffic Flow Problems / Aussagenlogische Erfüllbarkeit und Optimierung in periodischen Verkehrsflussproblemen

Großmann, Peter 08 November 2016 (has links) (PDF)
Automatically calculating periodic timetables in public railway transport systems is an NP-complete problem – namely the Periodic Event Scheduling Problem (PESP). The original model is restricted to basic periodic timetabling. Extending the model by decisional transport networks with flows induces new possibilities in the timetabling and planning process. Subsequently, the given flexibility results in a generic model extension of PESP that can be applied in subsets of the timetabling process. The successful utilization of this approach is presented for distinct chain paths, duplicated chain paths and non-connected flow graphs that represent integration of routing and timetabling, planning of periodic rail freight train paths and track allocation, respectively. Furthermore, the encoding of this generic model into a binary propositional formula is introduced and the appropriate usage of several techniques like SAT solving and MaxSAT to calculate and optimize the corresponding instances will be presented accordingly. Computational results for real-world scenarios suggest the practical impact and give promising perspectives for further scientific research.
12

Lineare Algebra und Erfüllbarkeitsalgorithmen für zufällige Formeln

Neupert, Sascha 07 June 2005 (has links)
Es werden effiziente Algorithmen vorgestellt, die auf algebraischen Methoden beruhen um die Unerfüllbarkeit aussagenlogischer 4-SAT Formeln zu zertifizieren. Die Algorithmen werden implementiert und auf praktische Weise hinsichtlich der Laufzeit mit Backtracking-Algorithmen verglichen.
13

SAT Compilation for Constraints over Structured Finite Domains

Bau, Alexander 07 February 2017 (has links)
A constraint is a formula in first-order logic expressing a relation between values of various domains. In order to solve a constraint, constructing a propositional encoding is a successfully applied technique that benefits from substantial progress made in the development of modern SAT solvers. However, propositional encodings are generally created by developing a problem-specific generator program or by crafting them manually, which often is a time-consuming and error-prone process especially for constraints over complex domains. Therefore, the present thesis introduces the constraint solver CO4 that automatically generates propositional encodings for constraints over structured finite domains written in a syntactical subset of the functional programming language Haskell. This subset of Haskell enables the specification of expressive and concise constraints by supporting user-defined algebraic data types, pattern matching, and polymorphic types, as well as higher-order and recursive functions. The constraint solver CO4 transforms a constraint written in this high-level language into a propositional formula. After an external SAT solver determined a satisfying assignment for the variables in the generated formula, a solution in the domain of discourse is derived. This approach is even applicable for finite restrictions of recursively defined algebraic data types. The present thesis describes all aspects of CO4 in detail: the language used for specifying constraints, the solving process and its correctness, as well as exemplary applications of CO4.
14

The Complexity of Reasoning with Boolean Modal Logics: Extended Version

Lutz, Carsten, Sattler, Ulrike 20 May 2022 (has links)
Since Modal Logics are an extension of Propositional Logic, they provide Boolean operators for constructing complex formulae. However, most Modal Logics do not admit Boolean operators for constructing complex modal parameters to be used in the box and diamond operators. This asymmetry is not present in Boolean Modal Logics, in which box and diamond quantify over arbitrary Boolean combinations of atomic model parameters. / This is an extended version of the article in: Advances in Modal Logic (AiML), Volume 3
15

Satisfiability and Optimization in Periodic Traffic Flow Problems

Großmann, Peter 25 October 2016 (has links)
Automatically calculating periodic timetables in public railway transport systems is an NP-complete problem – namely the Periodic Event Scheduling Problem (PESP). The original model is restricted to basic periodic timetabling. Extending the model by decisional transport networks with flows induces new possibilities in the timetabling and planning process. Subsequently, the given flexibility results in a generic model extension of PESP that can be applied in subsets of the timetabling process. The successful utilization of this approach is presented for distinct chain paths, duplicated chain paths and non-connected flow graphs that represent integration of routing and timetabling, planning of periodic rail freight train paths and track allocation, respectively. Furthermore, the encoding of this generic model into a binary propositional formula is introduced and the appropriate usage of several techniques like SAT solving and MaxSAT to calculate and optimize the corresponding instances will be presented accordingly. Computational results for real-world scenarios suggest the practical impact and give promising perspectives for further scientific research.
16

Towards Next Generation Sequential and Parallel SAT Solvers

Manthey, Norbert 01 December 2014 (has links)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.

Page generated in 0.0543 seconds