• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quorum sensing Rezeptorprotein LuxP – gentechnisches Design von LuxP-Derivaten zur Anwendung in der Biosensorik

Ihle, Karolina 17 January 2011 (has links) (PDF)
Als Quorum sensing (QS) wird die Kommunikation zwischen Bakterien bezeichnet. Diese basiert auf kleinen Signalmolekülen, die Autoinducer (AI) genannt werden. Durch QS werden von Bakterien Verhaltensweisen wie Fähigkeit zur Symbiose, Virulenz, Produktion von Antibiotika und Bildung von Biofilmen reguliert. Die Kommunikation kann innerhalb einer Spezies (Intraspezies-Kommunikation) oder mehreren Spezies (Interspezies-Kommunikation) erfolgen. Gram-negative Bakterien kommunizieren über acetylierte Homoserinlaktone (AHL), Gram-positive Bakterien dagegen benutzen modifizierte Oligopeptide als Autoinducer. Für die Interspezies-Kommunikation dient der Autoinducer-2 (AI-2). AI-2 entsteht auf dem Weg der spontanen Zyklisierung von 4,5-Dihydroxy-2,3-Pentadion (DPD), der von LuxS synthetisiert wird. Die Universalität des AI-2 als Signalmoleküls basiert auf dessen chemischen Eigenschaften. Als biologisch aktive Formen von DPD gelten S-THMF-Borat (bei marinen Bakterien wie Vibrio harveyi) und R-THMF (z.B. bei Enterobakterien wie Escherichia coli oder Salmonella enterica Serovar Typhimurium). AI-2 wird bei allen Bakterien von einem periplasmatischen Rezeptor gebunden. S-THMF-Borat bindet spezifisch an den Rezeptor LuxP, R-THMF dagegen an den Rezeptor LsrR. Durch die Anbindung des AI-2 verändert sich die Konformation des Rezeptors, was als Signal über weitere Proteine in die Zelle weitergeleitet wird. In E. coli ist die Expression des Operons lsrACDBFGE von AI-2 abhängig. Der lsr-Promotor wird von dem Repressor LuxR, Phospo-AI-2 sowie dem cAMP-CRP-Komplex reguliert. In dieser Arbeit wurden die molekularbiologische Grundlagen zur Entwicklung eines AI-2-Biosensors gelegt. Es wurden mehrere Fusionskonstrukte des V. harveyi AI-2 Rezeptors LuxP sowie dessen Derivate mit veränderter Affinität zur AI-2 kreiert, in E. coli exprimiert und aufgereinigt. Auch Rezeptorproteine von Vibrio fischeri sowie E. coli konnten erfolgreich exprimiert werden. Die Expression der Proteine erfolgte in E. coli luxS- Deletionsstämmen, die hierfür konstruiert worden sind. Die AI-2-Rezeptorproteine werden in E. coli vorwiegend in Form von inclusion bodys exprimiert. Nur ein Teil des Proteins ist löslich und kann für die Aufreinigung unter nativen Bedingungen verwendet werden. Auf der Basis von E. coli luxS- Deletionsstämmen wurde ein Bioassay entwickelt, der für die Detektion von AI-2 verwendet werden kann. Hierfür wurden mehrere Reporterplasmide konstruiert, in denen das rot fluoreszierende Protein DsRed unter die Kontrolle des lsr-Promotors von E. coli kloniert wurden. Dabei konnte unter Verwendung einer dieser Reporterplasmide (pBRDsRed) sowie des luxS-Deletionsstammes KIB1 Bioassay-Bedingungen etabliert werden, die einen Nachweis von AI-2 ermöglichen. Die für den Assay benötigten AI-2-Moleküle wurden in vitro mithilfe der Enzyme Pfs und LuxS und S-Adenosyl-Homocystein (SAH) als Substrat hergestellt. Der entwickelte AI-2-Bioassay wurde für die Bestimmung der Bindeaktivität der V. harveyi LuxP-Derivate verwendet. Die resultierenden Ergebnisse wiesen eine hohe Reproduzierbarkeit (1,2 bis 11,3 % Standartabweichung) auf.
2

The Influences of LuxS in Escherichia coli Biofilm Formation and Improving Teacher Quality through the Bio-Bus Program

Robbins, Chandan Morris 05 May 2012 (has links)
The objectives of this work are: 1) to agarose-stabilize fragile biofilms for quantitative structure analysis; 2) to understand the influences of LuxS on biofilm formation; 3) to improve teacher quality by preparing Georgia’s middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that quorum sensing, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and teachers are better equipped to give Georgia’s students a solid foundation in the sciences.
3

Quorum sensing Rezeptorprotein LuxP – gentechnisches Design von LuxP-Derivaten zur Anwendung in der Biosensorik

Ihle, Karolina 20 December 2010 (has links)
Als Quorum sensing (QS) wird die Kommunikation zwischen Bakterien bezeichnet. Diese basiert auf kleinen Signalmolekülen, die Autoinducer (AI) genannt werden. Durch QS werden von Bakterien Verhaltensweisen wie Fähigkeit zur Symbiose, Virulenz, Produktion von Antibiotika und Bildung von Biofilmen reguliert. Die Kommunikation kann innerhalb einer Spezies (Intraspezies-Kommunikation) oder mehreren Spezies (Interspezies-Kommunikation) erfolgen. Gram-negative Bakterien kommunizieren über acetylierte Homoserinlaktone (AHL), Gram-positive Bakterien dagegen benutzen modifizierte Oligopeptide als Autoinducer. Für die Interspezies-Kommunikation dient der Autoinducer-2 (AI-2). AI-2 entsteht auf dem Weg der spontanen Zyklisierung von 4,5-Dihydroxy-2,3-Pentadion (DPD), der von LuxS synthetisiert wird. Die Universalität des AI-2 als Signalmoleküls basiert auf dessen chemischen Eigenschaften. Als biologisch aktive Formen von DPD gelten S-THMF-Borat (bei marinen Bakterien wie Vibrio harveyi) und R-THMF (z.B. bei Enterobakterien wie Escherichia coli oder Salmonella enterica Serovar Typhimurium). AI-2 wird bei allen Bakterien von einem periplasmatischen Rezeptor gebunden. S-THMF-Borat bindet spezifisch an den Rezeptor LuxP, R-THMF dagegen an den Rezeptor LsrR. Durch die Anbindung des AI-2 verändert sich die Konformation des Rezeptors, was als Signal über weitere Proteine in die Zelle weitergeleitet wird. In E. coli ist die Expression des Operons lsrACDBFGE von AI-2 abhängig. Der lsr-Promotor wird von dem Repressor LuxR, Phospo-AI-2 sowie dem cAMP-CRP-Komplex reguliert. In dieser Arbeit wurden die molekularbiologische Grundlagen zur Entwicklung eines AI-2-Biosensors gelegt. Es wurden mehrere Fusionskonstrukte des V. harveyi AI-2 Rezeptors LuxP sowie dessen Derivate mit veränderter Affinität zur AI-2 kreiert, in E. coli exprimiert und aufgereinigt. Auch Rezeptorproteine von Vibrio fischeri sowie E. coli konnten erfolgreich exprimiert werden. Die Expression der Proteine erfolgte in E. coli luxS- Deletionsstämmen, die hierfür konstruiert worden sind. Die AI-2-Rezeptorproteine werden in E. coli vorwiegend in Form von inclusion bodys exprimiert. Nur ein Teil des Proteins ist löslich und kann für die Aufreinigung unter nativen Bedingungen verwendet werden. Auf der Basis von E. coli luxS- Deletionsstämmen wurde ein Bioassay entwickelt, der für die Detektion von AI-2 verwendet werden kann. Hierfür wurden mehrere Reporterplasmide konstruiert, in denen das rot fluoreszierende Protein DsRed unter die Kontrolle des lsr-Promotors von E. coli kloniert wurden. Dabei konnte unter Verwendung einer dieser Reporterplasmide (pBRDsRed) sowie des luxS-Deletionsstammes KIB1 Bioassay-Bedingungen etabliert werden, die einen Nachweis von AI-2 ermöglichen. Die für den Assay benötigten AI-2-Moleküle wurden in vitro mithilfe der Enzyme Pfs und LuxS und S-Adenosyl-Homocystein (SAH) als Substrat hergestellt. Der entwickelte AI-2-Bioassay wurde für die Bestimmung der Bindeaktivität der V. harveyi LuxP-Derivate verwendet. Die resultierenden Ergebnisse wiesen eine hohe Reproduzierbarkeit (1,2 bis 11,3 % Standartabweichung) auf.
4

The Role of Autoinducer-2 in Escherichia coli Biofilm Formation and the Discovery of a Plant-derived Quorum Sensing Inhibitor

Niu, Chen 26 May 2006 (has links)
The objectives of this work are: 1) to determine whether plant essential oil components influence the ability of Escherichia coli and several Pseudomonas species to form biofilms, and inhibit bacterial quorum sensing; 2) to understand the role of autoinducer-2 (AI-2) in biofilm formation by E. coli W3110. The biofilm formation assays determined that cinnamon, cassia and citronella oils differentially affected growth-normalized biofilm formation by E. coli. Cinnamaldehyde (CA) also inhibited the swimming motility of E. coli. Subinhibitory concentrations of CA were effective at inhibiting two types of acyl homoserine lactone (HSL) mediated quorum sensing (QS), and also AI-2 mediated QS. Because CA is widely used in the food and flavor industries, its potential to affect bacterial QS regulated processes should be recognized. The role of AI-2 mediated QS expression in physiology of E. coli W3110 was pleiotropic, including carbon utilization, fimbriae production, and the biofilm development. Overall, the research presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion may be broadly correlated. The anti-biofilm and anti-QS capability of CA implies that plant essential oil components might be promising for preventing the formation of detrimental biofilms.
5

Application of Boronic Acids in Medicinal Chemistry (Inhibitors, Sensors)

Ni, Nanting 13 April 2010 (has links)
It is well known boronic acids have its unique chemistry and related applications in organic synthesis. The boronic acid functionally group also plays very important roles in medicinal chemistry and chemical biology. For example, boronic acids have been developed as potential therapeutic agents, chemical biology tools. All these applications are directly related to the unique electronic and chemical properties of the boronic acid group. Herein, several application of boronic acids have been studied: 1) several groups of compounds were found as bacterial quorum sensing inhibitors; 2) a boronate compound was developed as a probe for detecting reactive oxygen species (ROS); and 3) boronic acid-modified aptamers can be used for glycoprotein recognition.
6

Quorum Sensing and Microbial Interactions in Coral Black Band Disease and Coral-Associated Bacteria

Zimmer, Beth L 08 November 2012 (has links)
The black band disease (BBD) microbial consortium often causes mortality of reef-building corals. Microbial chemical interactions (i.e., quorum sensing (QS) and antimicrobial production) may be involved in the BBD disease process. Culture filtrates (CFs) from over 150 bacterial isolates from BBD and the surface mucopolysaccharide layer (SML) of healthy and diseased corals were screened for acyl homoserine lactone (AHL) and Autoinducer-2 (AI-2) QS signals using bacterial reporter strains. AHLs were detected in all BBD mat samples and nine CFs. More than half of the CFs (~55%) tested positive for AI-2. Approximately 27% of growth challenges conducted among 19 isolates showed significant growth inhibition. These findings demonstrate that QS is actively occurring within the BBD microbial mat and that culturable bacteria from BBD and the coral SML are able to produce QS signals and antimicrobial compounds. This is the first study to identify AHL production in association with active coral disease.
7

In vitro Detection of AutoInducer-2 by Small Molecule Fluorophores

McMullen, Justin G. 14 July 2009 (has links)
No description available.
8

Development and application of liquid chromatography-tandem mass spectrometry methods to the understanding of metabolism and cell-cell signaling in several biological systems

Gooding, Jessica Renee 01 December 2011 (has links)
Liquid chromatography tandem mass spectrometry has become a powerful tool for investigating biological systems. Herein we describe the development of both isotope dilution mass spectrometry methods and targeted metabolomics methods for the study of metabolic and cell-cell signaling applications. A putative yeast enzyme was characterized by discovery metabolite profiling, kinetic flux profiling, transcriptomics and structural biology. These experiments demonstrated that the enzyme shb17 was a sedoheptulose bisphosphatase that provides a thermodynamically dedicated step towards riboneogenesis, leading to the redefinition of the canonical pentose phosphate pathway. An extension of metabolic profiling and kinetic flux profiling methods was developed for a set of symbiotic marine microorganisms. Carbon flux from the most abundant photosynthetic organism, Prochlorococcus, to a symbiotic Alteromonas was observed in liquid coculture. These methods enable a more biologically relevant assay for marine species and will lead to a better understanding of carbon flux in the oceans. Energy taxis refers to the active migration of bacteria in response to electron transport system related signals. The second messenger cyclic-di-GMP provides a link between the metabolic signals and motility. Quantitation of c-di-GMP helped characterize the nature of this regulation. Autoinducer-2 is a small sugar produced by a large variety of bacteria that is proposed to be a universal quorum sensing signal. The quorum sensing function of autoinducer-2 is disputed because it is produced by an enzyme of the activated methyl cycle, leading to an alternate hypothesis that it is simply a metabolic byproduct. Herein a method for the detection of autoinducer-2 is developed to enable studies of its signaling role and biosynthetic regulation. These studies demonstrated that autoinducer-2 does not function as a signal in all species. Further, metabolic experiments indicated that the metabolic impact of LuxS dysfunction was small and could be mitigated by recycling oxidized glutathione. Together, these data indicate that neither hypothesis is adequate. Evidence is provided that autoinducer-2 suppresses the immune system, by the interruption of cytokine signaling, implying that autoinducer play a protective role during host colonization.
9

Le Quorum Sensing chez la bactérie marine Shewanella woodyi : Rôle dans l'émission de luminescence et dans la formation du biofilm / Quorum sensing in the marine bacterium Shewanella woodyi : Role in luminescence emission and biofilm formation

Hayek, Mahmoud 17 May 2018 (has links)
Le « quorum sensing » (QS) est un moyen de communication bactérienne impliquant des petites molécules appelées auto-inducteurs qui au-delà d’un certain seuil de concentration induisent une synchronisation de l’expression génétique au sein de la communauté bactérienne. Ce mécanisme est impliqué dans plusieurs processus bactériens tels que la luminescence, la formation du biofilm, ce qui en fait une cible privilégiée pour l’inhibition du biofilm bactérien nuisible aux activités humaines. Plusieurs systèmes QS ont été identifiés ; les plus étudiés sont le système AHL (acyl homoserine lactone) et le système AI2 (auto inducteur 2). L’objectif principal de cette thèse est de caractériser le(s) système(s) QS de Shewanella woodyi, une bactérie marine luminescente capable de coloniser rapidement une surface et de former un biofilm. L’utilisation de biosenseurs de référence et des expériences de LC-MS ont montré que S. woodyi synthétise la C8-HSL et l’AI2. La mutation des gènes impliqués dans la synthèse ou la détection des HSL abolit la luminescence mais n’affecte pas la formation du biofilm. De plus, le système AI2 ne semble pas impliqué dans la luminescence et la formation de biofilm de S. woodyi. L’absence d’un récepteur d’AI2 suggère que cette molécule n’a pas un rôle régulateur et qu’elle ne serait qu’un produit secondaire du métabolisme cellulaire. Ce travail a donc permis de caractériser les 2 principaux systèmes QS de S. woodyi et pourrait permettre d’en faire un nouveau biosenseur marin. / Quorum sensing (QS) is a bacterial communication system involving small molecules called autoinducers which above a threshold concentration, induce the synchronization of genes expression within the bacterial community. This mechanism is involved in several bacterial processes such as luminescence and biofilm formation, making it a preferred target for the inhibition of bacterial biofilm harmful to human activities. Several QS systems have been identified; the most studied ones are the AHL system (acylhomoserine lactone) and the AI2 system (autoinducer 2). The main objective of this thesis is to characterize the QS system (s) of Shewanella woodyi, a luminescent marine bacterium able to rapidly colonize a surface and form a biofilm. The use of reference biosensors and LC-MS experiments have shown that S. woodyi synthesizes C8-HSL and AI2. The mutation of the genes involved in the synthesis or detection of HSL abolishes luminescence but does not affect the biofilm formation. Moreover, the AI2 system does not appear to be involved in the luminescence and biofilm formation of S. woodyi. The absence of an AI2 receptor suggests that this molecule does not have a regulatory role and that it is only a secondary product of cellular metabolism. This work has allowed the characterization of the 2 main QS systems of S. woodyi, which could make this strain a new marine biosensor.
10

Quorum Sensing Signals Produced by Heterotrophic Bacteria in Black Band Disease (BBD) of Corals and Their Potential Role in BBD Pathogenesis

Bhedi, Chinmayee D. 30 June 2017 (has links)
Black band disease (BBD) of corals is a temperature dependent, highly virulent, polymicrobial disease affecting reef-building corals globally. The microbial consortium of BBD is primarily comprised of functional physiological groups that include photosynthetic cyanobacteria, sulfate reducers, sulfide oxidizers and a vast repertoire of heterotrophic bacteria. Quorum sensing (QS), the cell-density dependent communication phenomenon in bacteria, is known to induce expression of genes for a variety of virulence factors in diseases worldwide. Microbes capable of QS release signals such as acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), which coordinate microbial interaction. The focus of the present study was to investigate the presence and potential role of QS in BBD pathogenicity, utilizing culture dependent and independent methodologies. Isolates across coral health states including BBD, were screened for production of QS signals, and AHL and AI-2 production capabilities were analyzed via LC-MS/MS. The effect of temperature on AHLs was also examined. Additionally, antimicrobial production capabilities of isolates were tested. BBD metagenomes were utilized to screen for sequences related to QS, antimicrobial synthesis, and antimicrobial resistance genes. BBD isolates represented a significantly higher proportion of isolates capable of producing QS signals in comparison to healthy coral isolates. Several AHLs produced by coral derived bacterial cultures were identified, and three AHLs, specifically 3OHC4, 3OHC5 and 3OHC6, showed a significant increase in production at an elevated temperature of 30 °C, which correlates with increased BBD incidence on reefs with increasing water temperature. Most of the BBD cultured isolates were identified as vibrios. Several sequences related to QS, antimicrobial synthesis and resistance genes were detected in the BBD metagenomes. Based on the findings of this study, a model for potential microbial interactions amongst BBD heterotrophs, centered around QS, is proposed. Taken together, the findings from this study provide a clearer understanding of the potential role of QS in BBD, and serve as the basis for further studies aimed at elucidating the pathogenesis of an intricate coral disease.

Page generated in 0.0209 seconds