• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 39
  • 14
  • 13
  • 11
  • 11
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact of autocrine factors on physiology and productivity in Trichoplusia ni serum-free cultures

Eriksson, Ulrika January 2005 (has links)
<p>The aim of this study was to increase the understanding of the mechanisms regulating cell proliferation and recombinant protein production in serum-free cultures of Trichoplusia ni (T. ni) insect cells.</p><p>Conditioned medium (CM) was shown to contain both stimulatory and inhibitory factors (CM factors) influencing cell growth. Metalloproteinase (MP) activity was the major factor responsible for the growth stimulating effect of CM as shown by using the specific MP inhibitor DL-thiorphan. MPs may exist in several different molecular mass forms due to autoproteolysis. Although the main band of the MP was determined to be around 48 kDa, precursor forms above 48 kDa as well as autocatalytic degradation products below the main band could be observed. It is not clear whether all forms of the MP or just the main band is involved in the growth regulation. Further, a proteinase inhibitor could be identified in the inhibitory fraction. Thus, we speculate that the proteinase inhibitor may be part of an autocrine system regulating cell proliferation.</p><p>Analysis of the cell cycle phase distribution revealed a high proportion of cells in the G1 (80-90 %) and a low proportion of cells in the S and G2/M phases (10-20 %) during the whole culture, indicating that S and G2/M are short relative to G1. After inoculation, a drastic decrease in the S phase population together with a simultaneous increase of cells in G1 and G2/M could be observed as a lagphase on the growth curve and this may be interpreted as a temporary replication stop. When the cells were released from the initial arrest, the S phase population gradually increased again. This was initiated earlier in CM-supplemented cultures, and agrees with the earlier increase in cell concentration. Thus, these data suggests a correlation between CM factors and the cell cycle dynamics.</p><p>In cultures supplied with CM, a clear positive effect on specific productivity was observed, with a 30 % increase in per cell productivity. The specific productivity was also maintained at a high level much longer time than in fresh-medium cultures. The positive effect observed after 20 h coincided with the time a stimulatory effect on cell growth first was seen. Thus, the productivity may be determined by the proliferation potential of the culture. A consequence of this would be that the secreted MP indirectly affects productivity.</p><p>Finally, the yeast extract from Express Five SFM contains factors up to 35 kDa which are essential for T. ni cell growth. The optimal concentration was determined to be 2.5-fold that in normal medium, while higher concentrations were inhibitory. However although vital, they were not solely responsible for the growth-enhancing effect, as some other, more general, component present in yeast extract was needed for proliferation as well.</p>
32

Investigation of the function and regulation of ABC transporters

Akkaya, Begum Gokcen January 2014 (has links)
ATP-Binding-Cassette (ABC) transporters are primary active pumps that typically couple the binding and hydrolysis of ATP to the translocation of compounds across cellular membranes. Some, like ABCB1, ABCC1 and ABCC3, are polyspecific and can efflux clinically important drugs which may contribute to their therapeutic failure. In this study I have investigated (1) the mechanism of ABC transporter function, (2) studied the potential for regulation by ubiquitin ligases (both using ABCB1 as a model), and (3) tested the involvement of ABCC1 and ABCC3 in autocrine signalling in cancer. (1) In 1966, Jardetzky et. al [1] proposed that membrane pumps function by exposing their ligand-binding pocket alternately on different sides of the membrane. For ABC transporters, this coupling of the aspect and affinity of the ligand-binding cavities of the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism but is poorly understood at the molecular level. Structure data suggest signals are transduced through intracellular loops of the TMDs which slot into grooves on the top surface of the NBDs. At the base of these grooves is the Q-loop. By analysing the function of Q-loop mutants in combination with ligand binding cavity mutants I have discovered that the Q-loops are crucial to the transport cycle and that they are required to couple ligand binding to conformational changes at the NBDs necessary to drive the transporter into an inward closed state. 4 (2) ABCB1 is known to be a key component of chemical barrier separating the circulation from the cerebrospinal fluid. It has also been reported to transport β-amyloid across the lumenal membrane and into the circulation. Loss of ABCB1 from the barrier with age has therefore been suggested to play a role in Alzheimer’s Disease. The ubiquitin ligase Nedd4-1 has been implicated in the post-translational regulation of ABCB1 abundance in cells. Here, I report that ABCB1 can be ubiquitinated by Nedd4-1 in vitro and identify the residues modified (by mass spectrometry). (3) Lysophosphatidylinositol (LPI) is an autocrine metabolite produced by cancer cells that binds to the G-protein coupled transmembrane receptor GPR55 on the surface of cells. Stimulation of GPR55 activates a signalling cascade that induces proliferation and metastases of the cancer cells. How LPI is released from the cells was not known. In this study I show that ABCC1 and ABCC3, which are known to be expressed in ovarian and pancreatic cancers, can transport LPI into inside-out vesicles suggesting a new role for these “drug resistance” transporters in cancer biology.
33

Qualitative study of NFκB models in macrophages

Alsoufi, Zainab January 2018 (has links)
Macrophages are the largest cells in the immune system and they regulate inflammatory signalling and inform cell fate decisions. Many signals, including those mediated by Tumor Necrosis Factor alpha (TNFα) converge on a few key intracellular signalling pathways, including the Nuclear Factor kappa B (NFκB) network. The NFκB signalling pathway plays a vital role in the regulation of many different cellular responses, including the production of TNFα itself, which is required to sustain and propagate immune responses to, for example, infection or tissue damage. In this thesis we report on studies-both experimental and theoretical-of the NFκB signalling pathway in macrophages. Our collaborators stimulated these cells with various doses of Lipopolysaccharide (LPS), a molecule that forms the major component of the outer membrane of Gram-negative bacteria: in these experiments it serves as a proxy for bacterial infection. The macrophages, studied in vitro, respond as they are believed to do in tissues, by secreting certain signalling molecules called cytokines: the level of secretion proved to depend on the strength of the LPS stimulus. Further, heterogeneity of macrophage signalling was observed in response to a range of LPS doses. Within individual macrophages LPS stimulation results in oscillatory behaviour of NFκB localisation-NFκB shuttles in and out of the nucleus-with an amplitude (peak nuclear concentration) that also depends on the LPS dose. Heterogeneity was also observed in cells that were stimulated with the same dose intensity. This raises an important question about how immune cells coordinate inflammatory activity in the presence of this variability. In this thesis we aim to achieve an understanding of the system through the qualitative analysis of mathematical models of it. This work explores both the parametric sensitivity and bifurcation analyses for two mathematical models of NFκB in macrophages. Parametric sensitivity analysis is used to investigate the role of parameters on the model's output, especially on certain features of the signal-peak amplitudes, inter-peak intervals and areas beneath curves-that are commonly measured in single-cell experiments. Local bifurcation analysis is conducted in order to show all the possible behaviours produced when varying parameters.
34

L'hormone de croissance : une cytokine

Raccurt, Mireille 28 April 2003 (has links) (PDF)
L'hormone de croissance (GH) est une hormone paradoxale. Historiquement reconnue comme responsable de la croissance post-natale, elle est actuellement considérée comme une véritable cytokine, synthétisée en de nombreux sites extra-hypophysaires et impliquée, lorsque dérégulée, dans les processus de tumorigénèse. Le travail présenté dans cette thèse a permis de caractériser et localiser par RT-PCR in situ, les cellules capables de synthétiser la GH dans le système immunitaire du fœtus et du rat adulte, puis dans les différents systèmes de prolifération cellulaire du carcinome canalaire mammaire humain montrant ainsi que la GH, par son action autocrine / paracrine est non seulement impliquée dans le développement embryonnaire mais participe à la progression tumorale. Nos travaux in vitro montrent que l'internalisation et la translocation nucléaire de la GH complexée à son récepteur sont indépendantes de l'activation de JAK2 « Janus Kinase 2 », cependant indispensable à son exportation hors du noyau. L'étude du système de régulation négative du signal induit par la GH nous a permis de mettre en évidence une surexpression de la protéine CIS « Cytokine-Inducible SH2-containing protein », dans les zones de prolifération tumorale des différents carcinomes étudiés et dans 8 lignées tumorales mammaires. La surexpression de CIS, in vitro, inhibe la voie de signalisation JAK/STAT « Signal Transducer and Activator of Transcription » et active la voie des MAPK « Mitogen Activated Protein Kinases ». Nous avons pour finir, corrélé l'activation prédominante de CIS à la synthèse de GH « autocrine » dans les cellules tumorales mammaires MCF-hGH. La localisation tant nucléaire que cytoplasmique de la GH et de toutes les molécules informatives laisse entrevoir des mécanismes de régulation encore inconnus. Les travaux futurs tenteront de répondre à la question maintenant cruciale : la GH, hormone de jouvence ou véritable oncogène ?
35

Development of a protein-free fed-batch process for NS0 cells: studies on regulation of proliferation

Spens, Erika January 2006 (has links)
The overall objective of this study was to investigate how NS0 cell proliferation is regulated in protein-free media. The hypothesis was that during the adaptation to growth factor-free media, animal cell lines start to produce their own autocrine growth factors to support proliferation, and after some time in a culture the effects of these factors are lost which results in cessation of proliferation. A chemically defined, protein-free and animal component-free medium was developed for the NS0 cells. This medium was comprised of a basal hybridoma medium to which phosphatidyl¬choline, cholesterol, β-cyclodextrin, ferric citrate and amino acids were added. A fed-batch process was then developed in this medium. The feed profile was optimised in a step-wise manner with a final feed solution containing glucose, glutamine, lipids, amino acids, vitamins, sodium selenite and ethanolamine. Specifically, supplementation with lipids (cholesterol) had a drastic effect on cell growth. Calcium, magnesium and potassium were not depleted during culture and a feed containing also iron, lithium, manganese, phosphorous and zinc did not significantly enhance the cell yield further. More than 8 x 106 viable cells mL-1 and 600 mg antibody L-1 was obtained in the final fed-batch. This corresponded to a 4.3-fold increase in viable cell yield and an 11.4-fold increase in product yield compared to bioreactor batch culture when the dilution of the fed-batch culture was also accounted for. The presence of autocrine growth factors in NS0 cell cultures was initially investigated by studying the effects of conditioned medium (CM). Concentrated CM had a significant positive effect on cell growth and part of this effect could be attributed to factor(s) eluting from a gel-filtration column at 20-25 kDa. In the search for cell-derived factors affecting cell growth the following proteins were identified as released/secreted by the NS0 cells; cyclophilin A, cyclophilin B, cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerise, macrophage migration inhibitory factor (MIF), β2-microglobulin, niemann pick type C2, secretory leukocyte protease inhibitor (SLPI), thioredoxin-1, TNF-α, tumour protein translationally controlled-1 and ubiquitin. Zymogram electrophoresis further identified aspartic acid, papain-like cysteine (including cathepsin L) and serine protease activity in the CM. Pro/cathepsin L, CypB, EGF, IFN-α/β/γ, IGF-I/II, leukaemia inhibitory factor, IL-6, IL-11, IL-25, MIF, oncostatin M, TGF-β and TNF-α were excluded as involved in autocrine regulation of NS0 cell proliferation. The serine protease activity was suggested to affect the cells negatively and since the serine protease inhibitor SLPI is also present in NS0 CM, a balance in serine protease activity may be crucial for optimal cell growth. Further, the receptor gp130, known to be associated with myeloma cell growth, was shown to be essential for NS0 cell proliferation as demonstrated by siRNA gene silencing. The results suggested that autocrine regulation of proliferation in NS0 cell cultures involves the receptor subunit gp130. / QC 20100920
36

Autocrine loop in the purinergic control of airway surface liquid volume : monitoring with a novel side-view imaging technique

Dubois, David 03 1900 (has links)
La Fibrose Kystique (FK) est une maladie dégénérative qui entraine une dégénération des poumons dû au problème de clairance mucociliaire (CMC). Le volume de surface liquide (SL) couvrant les cellules pulmonaires est essentiel à la clairance de mucus et au combat contre les infections. Les nucléotides extracellulaires jouent un rôle important dans la CMC des voies aériennes, en modifiant le volume de la SL pulmonaire. Cependant, les mécanismes du relâchement de l’ATP et de leurs déplacements à travers la SL, restent inconnus. Des études ultérieures démontrent que l’exocytose d’ATP mécano-sensible et Ca2+-dépendant, dans les cellules A549, est amplifié par les actions synergétiques autocrine/paracrine des cellules avoisinantes. Nous avions comme but de confirmer la présence de la boucle purinergique dans plusieurs modèles de cellules épithéliales et de développer un système nous permettant d’observer directement la SL. Nous avons démontrés que la boucle purinergique est fonctionnelle dans les modèles de cellules épithéliales examinés, mis appart les cellules Calu-3. L’utilisation de modulateur de la signalisation purinergique nous a permis d’observer que le relâchement d’ATP ainsi que l’augmentation du [Ca2+]i suivant un stress hypotonique, sont modulés par le biais de cette boucle purinergique et des récepteurs P2Y. De plus, nous avons développé un système de microscopie qui permet d’observer les changements de volume de SL en temps réel. Notre système permet de contrôler la température et l’humidité de l’environnement où se trouvent les cellules, reproduisant l’environnement pulmonaire humain. Nous avons démontré que notre système peut identifier même les petits changements de volume de SL. / Cystic Fibrosis (CF) patients suffer from respiratory problems associated with pulmonary infections and exacerbations, due to improper mucociliary clearance (MCC). The airway surface liquid (ASL) covering pulmonary epithelial cells plays a pivotal role in MCC and infection control. Extracellular nucleotides control MCC in airway epithelia by modulating ASL volume, ciliary beating and mucin secretion. The mechanism(s) of their release and dispersal within the ASL remain incompletely understood. Studies with A549 cells, a human alveolar type II cell model, have shown that mechanosensitive, Ca2+-dependent ATP secretion is strongly amplified by the synergistic autocrine/paracrine actions of released nucleotides. The aim of this study was to examine whether the autocrine purinergic loop operates in different lung epithelial cell models and to develop an imaging system allowing the direct monitoring of ASL height during purinergic stimulation. We demonstrated that the signaling loop is functional in all epithelial cells tested, with the exception of Calu-3 epithelial cells. With different purinergic signaling modulators, we demonstrated that ATP release and [Ca2+]i elevations evoked by hypotonic stress were strongly amplified by autocrine/paracrine effects in cells expressing the P2Y receptor family. To monitor ASL volume changes in real time, we developed a novel epi-fluorescence, side-view microscopy system to observe ASL height. During experiments, cell cultures grown on permeable filters were mounted in a custom-designed chamber that allows control of the temperature, humidity and air flow above the cell monolayer, mimicking the pulmonary environment. This system detects even small changes in ASL volume following purinergic stimulation.
37

Autocrine loop in the purinergic control of airway surface liquid volume : monitoring with a novel side-view imaging technique

Dubois, David 03 1900 (has links)
La Fibrose Kystique (FK) est une maladie dégénérative qui entraine une dégénération des poumons dû au problème de clairance mucociliaire (CMC). Le volume de surface liquide (SL) couvrant les cellules pulmonaires est essentiel à la clairance de mucus et au combat contre les infections. Les nucléotides extracellulaires jouent un rôle important dans la CMC des voies aériennes, en modifiant le volume de la SL pulmonaire. Cependant, les mécanismes du relâchement de l’ATP et de leurs déplacements à travers la SL, restent inconnus. Des études ultérieures démontrent que l’exocytose d’ATP mécano-sensible et Ca2+-dépendant, dans les cellules A549, est amplifié par les actions synergétiques autocrine/paracrine des cellules avoisinantes. Nous avions comme but de confirmer la présence de la boucle purinergique dans plusieurs modèles de cellules épithéliales et de développer un système nous permettant d’observer directement la SL. Nous avons démontrés que la boucle purinergique est fonctionnelle dans les modèles de cellules épithéliales examinés, mis appart les cellules Calu-3. L’utilisation de modulateur de la signalisation purinergique nous a permis d’observer que le relâchement d’ATP ainsi que l’augmentation du [Ca2+]i suivant un stress hypotonique, sont modulés par le biais de cette boucle purinergique et des récepteurs P2Y. De plus, nous avons développé un système de microscopie qui permet d’observer les changements de volume de SL en temps réel. Notre système permet de contrôler la température et l’humidité de l’environnement où se trouvent les cellules, reproduisant l’environnement pulmonaire humain. Nous avons démontré que notre système peut identifier même les petits changements de volume de SL. / Cystic Fibrosis (CF) patients suffer from respiratory problems associated with pulmonary infections and exacerbations, due to improper mucociliary clearance (MCC). The airway surface liquid (ASL) covering pulmonary epithelial cells plays a pivotal role in MCC and infection control. Extracellular nucleotides control MCC in airway epithelia by modulating ASL volume, ciliary beating and mucin secretion. The mechanism(s) of their release and dispersal within the ASL remain incompletely understood. Studies with A549 cells, a human alveolar type II cell model, have shown that mechanosensitive, Ca2+-dependent ATP secretion is strongly amplified by the synergistic autocrine/paracrine actions of released nucleotides. The aim of this study was to examine whether the autocrine purinergic loop operates in different lung epithelial cell models and to develop an imaging system allowing the direct monitoring of ASL height during purinergic stimulation. We demonstrated that the signaling loop is functional in all epithelial cells tested, with the exception of Calu-3 epithelial cells. With different purinergic signaling modulators, we demonstrated that ATP release and [Ca2+]i elevations evoked by hypotonic stress were strongly amplified by autocrine/paracrine effects in cells expressing the P2Y receptor family. To monitor ASL volume changes in real time, we developed a novel epi-fluorescence, side-view microscopy system to observe ASL height. During experiments, cell cultures grown on permeable filters were mounted in a custom-designed chamber that allows control of the temperature, humidity and air flow above the cell monolayer, mimicking the pulmonary environment. This system detects even small changes in ASL volume following purinergic stimulation.
38

Impact of autocrine factors on physiology and productivity in Trichoplusia ni serum-free cultures

Eriksson, Ulrika January 2005 (has links)
The aim of this study was to increase the understanding of the mechanisms regulating cell proliferation and recombinant protein production in serum-free cultures of Trichoplusia ni (T. ni) insect cells. Conditioned medium (CM) was shown to contain both stimulatory and inhibitory factors (CM factors) influencing cell growth. Metalloproteinase (MP) activity was the major factor responsible for the growth stimulating effect of CM as shown by using the specific MP inhibitor DL-thiorphan. MPs may exist in several different molecular mass forms due to autoproteolysis. Although the main band of the MP was determined to be around 48 kDa, precursor forms above 48 kDa as well as autocatalytic degradation products below the main band could be observed. It is not clear whether all forms of the MP or just the main band is involved in the growth regulation. Further, a proteinase inhibitor could be identified in the inhibitory fraction. Thus, we speculate that the proteinase inhibitor may be part of an autocrine system regulating cell proliferation. Analysis of the cell cycle phase distribution revealed a high proportion of cells in the G1 (80-90 %) and a low proportion of cells in the S and G2/M phases (10-20 %) during the whole culture, indicating that S and G2/M are short relative to G1. After inoculation, a drastic decrease in the S phase population together with a simultaneous increase of cells in G1 and G2/M could be observed as a lagphase on the growth curve and this may be interpreted as a temporary replication stop. When the cells were released from the initial arrest, the S phase population gradually increased again. This was initiated earlier in CM-supplemented cultures, and agrees with the earlier increase in cell concentration. Thus, these data suggests a correlation between CM factors and the cell cycle dynamics. In cultures supplied with CM, a clear positive effect on specific productivity was observed, with a 30 % increase in per cell productivity. The specific productivity was also maintained at a high level much longer time than in fresh-medium cultures. The positive effect observed after 20 h coincided with the time a stimulatory effect on cell growth first was seen. Thus, the productivity may be determined by the proliferation potential of the culture. A consequence of this would be that the secreted MP indirectly affects productivity. Finally, the yeast extract from Express Five SFM contains factors up to 35 kDa which are essential for T. ni cell growth. The optimal concentration was determined to be 2.5-fold that in normal medium, while higher concentrations were inhibitory. However although vital, they were not solely responsible for the growth-enhancing effect, as some other, more general, component present in yeast extract was needed for proliferation as well. / <p>QC 20101129</p>
39

An IL-4-dependent macrophage-iNKT cell circuit resolves sterile inflammation and is defective in mice with chronic granulomatous disease

Zeng, Melody Yue 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The immune system initiates tissue repair following injury. In response to sterile tissue injury, neutrophils infiltrate the tissue to remove tissue debris and subsequently undergo apoptosis. Proper clearance of apoptotic neutrophils in the tissue by recruited macrophages, in a process termed efferocytosis, is critical to facilitate the resolution of inflammation and tissue repair. However, the events leading to suppression of sterile inflammation following efferocytosis, and the contribution of other innate cell types are not clearly defined in an in vivo setting. Using a sterile mouse peritonitis model, we identified IL-4 production from efferocytosing macrophages in the peritoneum that activate invariant NKT cells to produce cytokines including IL-4 and IL-13. Importantly, IL-4 from macrophages functions in autocrine and paracrine circuits to promote alternative activation of peritoneal exudate macrophages and augment type-2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Ra expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The phagocyte NADPH oxidase, a multi-subunit enzyme complex we demonstrated to require a physical interaction between the Rac GTPase and the oxidase subunit gp91phox for generation of reactive oxygen species (ROS), is required for production of ROS within macrophage phagosomes containing ingested apoptotic cells. In mice with X-linked chronic granulomatous disease (X-CGD) that lack gp91phox, efferocytosing macrophages were unable to produce ROS and were defective in activating iNKT during sterile peritonitis, resulting in enhanced and prolonged inflammation. Thus, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair.

Page generated in 0.1298 seconds