Spelling suggestions: "subject:"automated logic"" "subject:"automated yogic""
1 |
Simulation and emulation of massively parallel processor for solving constraint satisfaction problems based on oraclesChaudhari, Gunavant Dinkar 01 January 2011 (has links)
Most part of my thesis is devoted to efficient automated logic synthesis of oracle processors. These Oracle Processors are of interest to several modern technologies, including Scheduling and Allocation, Image Processing and Robot Vision, Computer Aided Design, Games and Puzzles, and Cellular Automata, but so far the most important practical application is to build logic circuits to solve various practical Constraint Satisfaction Problems in Intelligent Robotics. For instance, robot path planning can be reduced to Satisfiability. In short, an oracle is a circuit that has some proposition of solution on the inputs and answers yes/no to this proposition. In other language, it is a predicate or a concept-checking machine. Oracles have many applications in AI and theoretical computer science but so far they were not used much in hardware architectures. Systematic logic synthesis methodologies for oracle circuits were so far not a subject of a special research. It is not known how big advantages these processors will bring when compared to parallel processing with CUDA/GPU processors, or standard PC processing. My interest in this thesis is only in architectural and logic synthesis aspects and not in physical (technological) design aspects of these circuits. In future, these circuits will be realized using reversible, nano and some new technologies, but the interest in this thesis is not in the future realization technologies. We want just to answer the following question: Is there any speed advantage of the new oracle-based architectures, when compared with standard serial or parallel processors?
|
2 |
The Biowall Field Test Analysis and OptimizationJacob J. Torres (5930906) 14 May 2019 (has links)
<div>
<p>A residential botanical
air filtration system (Biowall) to investigate the potential for using
phytoremediation to remove contaminants from indoor air was developed. A full scale and functioning prototype was
installed in a residence located in West Lafayette, Indiana. The prototype was integrated into the central
Heating, Ventilating, and Air Conditioning (HVAC) system of the home. This
research evaluated the Biowall operation to further its potential as an energy
efficient and sustainable residential air filtration system.<br></p>
<p> </p>
<p>The main research effort
began after the Biowall was installed in the residence. A field evaluation, which
involved a series of measurements and data analysis, was conducted to identify
treatments to improve Biowall performance. The study was conducted for
approximately one year (Spring 2017-Spring 2018). Based on the initial data
set, prioritization of systems in need of improvement was identified and
changes were imposed. Following a post-treatment
testing period, a comparison between the initial and final performances was completed
with conclusions based on this comparison. </p>
<p> </p>
<p>The engineering and analysis
reported in this document focus on the air flow path through the Biowall, plant
growth, and the irrigation system. The conclusions provide an extensive
evaluation of the design, operation, and function of the Biowall subsystems
under review.</p>
</div>
<br>
|
Page generated in 0.0567 seconds