Spelling suggestions: "subject:"automatic demodulation arecognition"" "subject:"automatic demodulation 2recognition""
1 |
IMPROVEMENTS IN AUTOMATIC MODULATION RECOGNITION OF ASK AND FSK SIGNALSSimms, Dennis, Kosbar, Kurt 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / An algorithm for automatic modulation recognition of ASK, PSK and FSK was developed by Azzouz and Nandi. The algorithm has some serious problems at SNR of 10 dB and below. This paper describes a modification to the algorithm that significantly improves the performance for detection of ASK and FSK at moderate and low SNR.
|
2 |
Feature Based Modulation Recognition For Intrapulse ModulationsCevik, Gozde 01 September 2006 (has links) (PDF)
In this thesis study, a new method for automatic recognition of intrapulse modulations has been proposed. This new method deals the problem of modulation recognition with a feature-based approach.
The features used to recognize the modulation type are Instantaneous Frequency, Instantaneous Bandwidth, Amplitude Modulation Depth, Box Dimension and Information Dimension. Instantaneous Bandwidth and Instantaneous Frequency features are extracted via Autoregressive Spectrum Modeling. Amplitude Modulation Depth is used to express the depth of amplitude change on the signal. The other features, Box Dimension and Information Dimension, are extracted using Fractal Theory in order to classify the modulations on signals depending on their shapes. A modulation database is used in association with Fractal Theory to decide on the modulation type of the analyzed signal, by means of a distance metric among fractal dimensions. Utilizing these features in a hierarchical flow, the new modulation recognition method is achieved.
The proposed method has been tested for various intrapulse modulation types. It has been observed that the method has acceptably good performance even for low SNR cases and for signals with small PW.
|
3 |
Representation Learning for Modulation Recognition of LPI Radar Signals Through Clustering / Representationsinlärning för modulationsigenkänning av LPI-radarsignaler genom klustringGrancharova, Mila January 2020 (has links)
Today, there is a demand for reliable ways to perform automatic modulation recognition of Low Probability of Intercept (LPI) radar signals, not least in the defense industry. This study explores the possibility of performing automatic modulation recognition on these signals through clustering and more specifically how to learn representations of input signals for this task. A semi-supervised approach using a bootstrapped convolutional neural network classifier for representation learning is proposed. A comparison is made between training the representation learner on raw time-series and on spectral representations of the input signals. It is concluded that, overall, the system trained on spectral representations performs better, though both approaches show promise and should be explored further. The proposed system is tested both on known modulation types and on previously unseen modulation types in the task of novelty detection. The results show that the system can successfully identify known modulation types with adjusted mutual information of 0.86 for signal-to-noise ratios ranging from -10 dB to 10 dB. When introducing previously unseen modulations, up to six modulations can be identified with adjusted mutual information above 0.85. Furthermore, it is shown that the system can learn to separate LPI radar signals from telecom signals which are present in most signal environments. / Idag finns ett behov av pålitlig automatiserad modulationsigenkänning (AMR) av Low Probability of Inercept (LPI)-radarsignaler, inte minst hos försvarsindustrin. Denna studie utforskar möjligheten att utföra AMR av dessa signaler genom klustring och mer specifikt hur man bör lära in representationer av signalerna i detta syfte. En halvövervakad inlärningsmetod som använder en klassificerare baserad på faltningsnätverk föreslås. En jämförelse görs mellan ett system som tränar för representationsinlärning på råa tidsserier och ett system som tränar på spektrala representationer av signalerna. Resultaten visar att systemet tränat på spektrala representationer på det stora hela presterar bättre, men båda metoderna visar lovande resultat och bör utforskas vidare. Systemet testas på signaler från både kända och för systemet tidigare okända modulationer i syfte att pröva förmågan att upptäcka nya typer av modulationer. Systemet identifierar kända modulationer med adjusted mutual information på 0.86 i brusnivåer från -10 dB till 10 dB. När tidigare okända modulationer introduceras till systemet ligger adjusted mutual information över 0.85 för upp till sex modulationer. Studien visar dessutom att systemet kan lära sig skilja LPI-radarsignaler från telekommunikationssignaler som är vanliga i de flesta signalmiljöer.
|
Page generated in 0.1635 seconds