Spelling suggestions: "subject:"automatische classifikation"" "subject:"automatische bildklassifikation""
31 |
Automatische Erkennung von Zuständen in AnthropomatiksystemenMoldenhauer, Jörg. January 2006 (has links)
Universiẗat, Diss., 2005--Karlsruhe.
|
32 |
Spamerkennung mit Support Vector MachinesMöller, Manuel 22 June 2005 (has links)
Diese Arbeit zeigt ausgehend von einer Darstellung der theoretischen Grundlagen automatischer Textklassifikation, dass die aus der Statistical Learning Theory stammenden Support Vector Machines geeignet sind, zu einer präziseren Erkennung unerwünschter E-Mail-Werbung beizutragen. In einer Testumgebung mit einem Corpus von 20 000 E-Mails wurden Testläufe verschiedene Parameter der Vorverarbeitung und der Support Vector Machine automatisch evaluiert und grafisch visualisiert. Aufbauend darauf wird eine Erweiterung für die Open-Source-Software SpamAssassin beschrieben, die die vorhandenen Klassifikationsmechanismen um eine Klassifikation per Support Vector Machine erweitert.
|
33 |
Evaluierung verschiedener Ansätze zur Indexierung im inhaltsbasierten Image RetrievalDaßler, Stefanie 10 February 2008 (has links)
In dieser Arbeit werden drei verschiedene Ansätze zur Indexierung beim inhaltsbasierten
Image Retrieval evaluiert werden. Als Basis werden dafür Farben und Formen mit Hilfe
von annularen Histogrammen extrahiert. Eine Ähnlichkeitsmetrik für diese Histogramme
wird über das Produkt der Eulerschen Distanz und der Histogramm Distanz gebildet, der
sogenannten Distanzmetrik.
Unter Verwendung dieser Metrik werden folgende drei Verfahren der inhaltsbasierten N-Nearest-
Neighbor Suche nach Bildern in dieser Arbeit vorgestellt:
1. Einfache, sequentielle Suche in den Histogrammen der Bilder
2. Verwendung des Evolving Tree, einer Art SOM, als Indexstruktur
3. Nutzung des Vantage Point Trees als Indexstruktur
Abschließend sollen die drei beschriebenen Verfahren miteinander verglichen und ausgewertet
werden. Im Hinblick auf das inhaltsbasierte Image Retrieval zeigen sich die Vorteile
und Nachteile der Anwendung dieser Verfahren.
|
34 |
BLAINDER—A Blender AI Add-On for Generation of Semantically Labeled Depth-Sensing DataReitmann, Stefan, Neumann, Lorenzo, Jung, Bernhard 02 July 2024 (has links)
Common Machine-Learning (ML) approaches for scene classification require a large amountof training data. However, for classification of depth sensor data, in contrast to image data, relativelyfew databases are publicly available and manual generation of semantically labeled 3D point clouds isan even more time-consuming task. To simplify the training data generation process for a wide rangeof domains, we have developed theBLAINDERadd-on package for the open-source 3D modelingsoftware Blender, which enables a largely automated generation of semantically annotated point-cloud data in virtual 3D environments. In this paper, we focus on classical depth-sensing techniquesLight Detection and Ranging (LiDAR) and Sound Navigation and Ranging (Sonar). Within theBLAINDERadd-on, different depth sensors can be loaded from presets, customized sensors can beimplemented and different environmental conditions (e.g., influence of rain, dust) can be simulated.The semantically labeled data can be exported to various 2D and 3D formats and are thus optimizedfor different ML applications and visualizations. In addition, semantically labeled images can beexported using the rendering functionalities of Blender.
|
Page generated in 0.1412 seconds