Spelling suggestions: "subject:"automobiles pollution control devices"" "subject:"automobiles collution control devices""
1 |
Selective catalytic reduction for light-duty diesel engines using ammonia gasSturgess, M. January 2012 (has links)
This thesis describes an investigation into the spatial species conversion profiles of a Cu-zeolite SCR under engine conditions at low exhaust gas temperatures; this was then compared with a CFD model that models the catalyst via a porous medium measuring 5 x 5 x 91 cells assuming a uniform cross-sectional flow distribution. Species conversion rates were sampled at fixed points in the axial direction. The analysis of the spatial conversion profiles is a more rigorous method in assessing the ability of a mathematical model to predict the experimental data. It can also assist in the optimisation of the catalyst size, minimising packaging requirements and manufacturing costs. The experiments were undertaken on a light-duty diesel engine at a speed of 1500rpm, and at a load of 6bar BMEP; this provided exhaust gas temeraqtures between 200 and 220°C. NO2:NOx ratios were controlled by changing the size and position of the diesel oxidation catalyst, the inlet NH3: NOx ratio was also also varied, ammonia gas was used instead of urea for the purposes of simlicity. The advantage of testing on an actual engine over lab-babed studies is that the conditions such as exhaust gas composition are more realistic. A 1D CFD model was constructed using the ‘porous medium approach’ with kinetics obtained from open literature. Results from the simulations were then compared with the experimental data for the same engine conditions. It was observed that the majority of the NOx conversion took place in the first half of the brick for all NH3: NOx ratios investigated, and that the formation of N2O via NO2 and ammonia had the same influence as the ‘fast’ SCR reaction just after the inlet, which the CFD model failed to predict for the base case analyses. The influence of the inlet ammonia on the model was also noticed to be greater than in the experiments. Simple transient analyses were also undertaken on the short SCR bricks for NO2: NOx ratios of 0.6 and 0.07, and it was observed that the response time to steady-state was noticeably higher in the experiments than in the model. Modifications made to the model, including decreasing the influence of the ‘fast’ SCR reaction, and the addition of an empirical term onto the ammonia adsorption provided a noticeably better agreement for different NH3: NOx injection ratios. The desorption kinetics in the model were also altered by increasing the strength of the bonding of the ammonia onto the adsorption sites. This improved the transient agreement between the model and the experiments, but reduced the steady-state concentrations at the exit of the brick for all NH3:NOx ratios investigated.
|
2 |
Analysis of the sensitivity of photochemical airshed modeling to grid size and spatial and temporal distributions aof mobile source emissionsLakshminarayanan, Anand 08 1900 (has links)
No description available.
|
3 |
An analysis of the influence of phosphorus poisoning on the exhaust emission after treatement systems of light-duty diesel vehiclesToral del Rio, Maria Isabel January 2007 (has links)
Climate change has become a discussion topic of exponentially increasing urgency and importance amoung world leaders of all disciplines. These changes are brought about by the emission of so-called Greenhouse gases from various human activities. The primary cause of CO2 emissions is the burning of the Earth’s supply of nonrenewable natural fossil fuels like coal, oil and natural gas. The world first agreed on the prevention of “dangerous” climatic changes at the Earth Summit in 1992. The Kyoto Protocol of 1997 was the first step toward protection of the atmosphere and prescribes restrictions on emission pollutants. Since then the vehicle gas emissions are being controlled by means of different gas emissions norms, like the European Union Norm in Europe. The automotive manufacturers and suppliers are collectively working on reducing overall vehicle emissions. They are focusing on several different emission limiting possibilities, for example improved engine design, special fuel development and exhaust gas treatment systems. The exhaust gas treatment process requires continuous controlling and management of the exhaust gas emissions while driving a vehicle. Certain factors such as high emission temperatures have a negative influence on the life span of these systems. Their functionality and durability is also known to be reduced by the presence of chemical poisoning species like sulphur, phosphorus, zinc and calcium. The chemical poisoning species are produced during combustion of fuel and engine oil. They are therefore contained in the exhaust emissions and can poison the catalyst when passing over it. Phosphorous poisoning is particularly problematic and should be reduced considerably. This study involves the investigation of the phosphorous poisoning process and aims to provide clarity regarding the influences of different fuel and oil compositions on the severity of the process. Engine oil and biodiesel are two major sources of phosphorous poisoning. The phosphorus contained in biodiesel fuel is a natural component and can be minimized during the refining procedure. In contrast to others studies, the biodiesel fuel used during this project was SME (Soya Methyl Ester) with a 20% biodiesel content. This choice of fuel was made because of the increasingly important role that this type of biodiesel is playing in the European market and the future tendency to increase the percentage of biodiesel in the mixture with standard diesel fuel. The phosphorus contained in engine oil is a necessary additive to retain the antioxidant and anti-wear properties of the oil. This study examined the poisoning influences from the most commonly used phosphorus containing oil additive, Zinc Dithiophosphates (ZDDP), as well as a Zn-free, phosphorus containing anti-wear oil additive. This formulation provides information about the phosphorus poisoning process as caused by the engine oil in the absence of Zn in the oil additives. The results show how the phosphorus content in biodiesel fuel affects the functionality of the exhaust gas treatment systems and the importance of reducing the permitted content of phosphorus contained in the fuel. Reducing the phosphorus content in the fuel will conserve the functionality of the exhaust gas treatment systems during their operational life and thereby protect the environmental from emission pollutants. It also provides insight into the differences in the poisoning processes when the phosphorus deposited on the catalyst comes from biodiesel fuel and when it comes from the engine oil. Finally the results also illustrate the influence of different phosphorous forms contained in engine oil additives on the catalyst poisoning process. This information could be used for the development of new oil additive formulations.
|
4 |
Effect of oil age on polyaromatic hydrocarbon emissions from automobilesMiller, David J. January 1986 (has links)
Automobiles are known to emit polyaromatic hydrocarbons. The literature indicates that the emission levels of these compounds are correlated with oil age, and it has been hypothesized that entry of oil into the combustion chamber is a major cause of these emissions. This experiment investigated the relationship between oil age and these polyaromatic hydrocarbon emissions. It was found that the three polyaromatics of interest seem to be emitted inconsistently and irregularly. It is possible that this was due to a buildup on the combustion chamber walls of these compounds: polyaromatics are formed in the quench layer near these walls and can accumulate there until dynamic equilibrium is reached. This may not have been reached at the time of the investigation since the engine was relatively new. This would be of interest for future investigations. / M.S.
|
5 |
Reducing emissions of older vehicles through fuel system conversion to natural gasUdell, Thomas Gregory 05 1900 (has links)
No description available.
|
6 |
Etude des effets promoteurs dans les réactions catalytiques de dépollution par l'argent et l'orBongiovanni, Alessandro 05 July 2007 (has links)
La catalyse hétérogène influe sur la cinétique des réactions chimiques pour favoriser la formation de produits souhaités. Appliquée à la dépollution atmosphérique, elle permet de réduire considérablement l'émission de polluants. Son plus grand succès public est d'ailleurs sans conteste le pot catalytique pour les moteurs à essence. Malgré ce succès, beaucoup reste à faire pour améliorer la dépollution à basse température et pour des conditions d'utilisations très différentes telles que celles imposées par les moteurs Diesel et "lean burn".<p><p>Lors de ce travail nous nous sommes intéressés à ces sujets. Tout d'abord, nous avons étudié l'effet du SO2 sur la réduction catalytique sélective des NOx sur des catalyseurs Ag/Al2O3 dans les conditions des moteurs Diesel. Le dioxyde de soufre est reconnu comme un poison de catalyseurs. Dans cette thèse, nous avons étudié un effet promoteur du SO2. Les catalyseurs qui ont fait l’objet de ce travail ont été préparés au laboratoire. Nous avons fait varier différents paramètres tels que la température, la nature de l'hydrocarbure ou encore la concentration de SO2 afin de mieux cerner cet effet promoteur. Nous avons mis en évidence que cet effet promoteur est observable lorsque le propène est utilisé comme réducteur, alors qu'avec le propane il s'agit plutôt d'un effet négatif du SO2.<p><p>Le deuxième sujet étudié dans ce travail est l'oxydation du CO sur des catalyseurs Au/TiO2, soit préparés au laboratoire, soit fournis comme référence du World Gold Council. Ces catalyseurs offrent l’avantage de pouvoir oxyder le CO à basse température, ce qui pourrait résoudre le problème de la pollution liée au démarrage à froid des automobiles. Ces catalyseurs subissent une désactivation que nous avons analysée par spectroscopie infrarouge (DRIFT et FTIR). Une étude XPS-SIMS de catalyseurs ayant des activités différentes nous a permis de mettre en évidence des concentrations de sodium différentes sur ces catalyseurs. Dans cette thèse, nous nous sommes plus particulièrement intéressés à l'influence du potassium. Pour mettre en évidence l'influence de celui-ci sur l'activité catalytique, des catalyseurs Au/TiO2 furent préparés en absence stricte d'alcalins et d'alcalino-terreux pour ajouter par après, de manière contrôlée, les quantités souhaitées de potassium. La composition des catalyseurs préparés fut contrôlée par XPS-SIMS. Il s'avère que la présence de potassium permet d'accroître l'activité catalytique, néanmoins il semble y avoir une concentration optimale de potassium qui varie en fonction de la composition/morphologie du catalyseur Au/TiO2 au départ, c'est-à-dire sans modification par ajout de potassium.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0959 seconds