Spelling suggestions: "subject:"automobiles springs anda suspension"" "subject:"automobiles springs ando suspension""
1 |
Characteristic analysis, regulating mechanism modeling and advanced control on hydraulic adjustable dampers for automotive semi-active suspensionsMa, Xin Bo January 2018 (has links)
University of Macau / Faculty of Science and Technology. / Department of Electromechanical Engineering
|
2 |
The synthesis of active and passive automobile suspension systems by pole-zero methods [microform]Thompson, Anthony George January 1965 (has links)
Photocopy of a carbon copy of the original / xi, 331 leaves : ill. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Mechanical Engineering, 1966
|
3 |
The synthesis of active and passive automobile suspension systems by pole-zero methods [microform]Thompson, Anthony George January 1965 (has links)
Photocopy of a carbon copy of the original / xi, 331 leaves : ill. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Mechanical Engineering, 1966
|
4 |
Vehicle active suspension system sensor reductionTims, Heath Eric 28 August 2008 (has links)
Not available / text
|
5 |
Optimization of coulombic semi-active automotive suspension systemsHuynh, Due Quoc 05 1900 (has links)
No description available.
|
6 |
Vibration control of a suspension system via a magnetorheological fluid damper.January 2000 (has links)
by Lai Chun Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 75-79). / Abstracts in English and Chinese. / LIST OF FIGURES --- p.vi / LIST OF TABLES --- p.ix / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Vibration Control of Suspension Systems --- p.1 / Chapter 1.1.2 --- Semi-active Devices --- p.3 / Chapter 1.2 --- Literature Review --- p.5 / Chapter 1.2.1 --- MR Fluid and Damper --- p.5 / Chapter 1.2.2 --- Vibration Control --- p.6 / Chapter 1.2.3 --- Robust Control --- p.8 / Chapter 1.3 --- Research Objective --- p.9 / Chapter 1.4 --- Organization of the Thesis --- p.9 / Chapter 2 --- MR DAMPER BEHAVIOR AND MODELING --- p.11 / Chapter 2.1 --- MR Damper --- p.12 / Chapter 2.2 --- Mathematical Model --- p.13 / Chapter 2.3 --- Experimental Setup --- p.15 / Chapter 2.4 --- Damper Characteristics --- p.18 / Chapter 2.5 --- Comparison Between Model with Experimental Data --- p.25 / Chapter 2.5.1 --- Graphical Study --- p.26 / Chapter 2.5.2 --- Quantitative Study --- p.26 / Chapter 2.5.3 --- Other Input Tests --- p.27 / Chapter 3 --- SEMI-ACTIVE VIBRATION CONTROL --- p.33 / Chapter 3.1 --- Dynamic Modelling of Suspension Systems --- p.33 / Chapter 3.2 --- Single-degree-of-freedom (SDOF) Passive Suspension System --- p.34 / Chapter 3.2.1 --- Viscous Damper --- p.34 / Chapter 3.2.2 --- MR Damper --- p.37 / Chapter 3.3 --- Single-degree-of-freedom (SDOF) Semi-active Suspension System --- p.41 / Chapter 3.3.1 --- Ideal Skyhook Control --- p.41 / Chapter 3.3.2 --- Semi-active Skyhook Control --- p.44 / Chapter 3.4 --- Semi-active Robust Control Development --- p.46 / Chapter 3.5 --- Sliding Mode Control --- p.47 / Chapter 3.6 --- Semi-active Damper Control --- p.51 / Chapter 3.6.1 --- On-off Control --- p.52 / Chapter 3.6.2 --- Continuous-state Control --- p.53 / Chapter 3.6.3 --- Comparison Between On-off and Continuous-state Controller --- p.54 / Chapter 4 --- SIMULATION STUDIES --- p.57 / Chapter 4.1 --- Transmissibility --- p.57 / Chapter 4.2 --- Different Base Excitations --- p.59 / Chapter 4.2.1 --- Bump Input --- p.60 / Chapter 4.2.2 --- Random Input --- p.62 / Chapter 5 --- CONCLUSION --- p.67 / Chapter 5.1 --- Summary --- p.67 / Chapter 5.2 --- Future Work --- p.68 / APPENDIX --- p.69 / Chapter A.1 --- Semi-active Control with MR Damper ´ؤ Main Program Listing --- p.69 / Chapter A.2 --- Sub-program Listing (Dynamic System) --- p.70 / Chapter A.3 --- Sub-program Listing (Sliding Mode Controller) --- p.73 / Chapter A.4 --- Sub-program Listing (MR Damper Model) --- p.73 / BIBLIOGRAPHY --- p.75
|
7 |
Parametric analysis and semi-active control of automotive suspension systems.January 2001 (has links)
Lam Hiu Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 106-111). / Abstracts in English and Chinese. / abstract --- p.i / 摘要 --- p.iii / acknowledgements --- p.v / table of contents --- p.vi / list of figures --- p.viii / list of tables --- p.xi / Chapter 1 --- introduction --- p.1 / Chapter 1.1 --- Controllable Suspension System --- p.1 / Chapter 1.1.1 --- Automotive Suspension System --- p.2 / Chapter 1.1.2 --- Controllable Devices --- p.4 / Chapter 1.1.3 --- MR Fluid and Damper --- p.5 / Chapter 1.2 --- Vibration Control --- p.5 / Chapter 1.2.1 --- Active Control --- p.5 / Chapter 1.2.2 --- Semi-active Control --- p.6 / Chapter 1.2.3 --- Robust Control --- p.7 / Chapter 1.3 --- Research Objective --- p.7 / Chapter 1.4 --- Thesis Outline --- p.8 / Chapter 2 --- PARAMETRIC STUDY OF SUSPENSION SYSTEMS --- p.9 / Chapter 2.1 --- System Models and Transmissibility --- p.9 / Chapter 2.1.1 --- Passive Suspension System --- p.10 / Chapter 2.1.2 --- Skyhook Suspension System --- p.15 / Chapter 2.1.3 --- Groundhook Suspension System --- p.24 / Chapter 2.1.4 --- Hybrid Suspension System --- p.32 / Chapter 2.1.5 --- Comparison among four suspension systems --- p.41 / Chapter 2.2 --- Characteristics analysis --- p.45 / Chapter 2.2.1 --- Passive Suspension System --- p.45 / Chapter 2.2.2 --- Skyhook Suspension System --- p.47 / Chapter 2.2.3 --- Groundhook Suspension System --- p.50 / Chapter 2.2.4 --- Hybrid Suspension System --- p.52 / Chapter 2.3 --- Stability --- p.54 / Chapter 2.3.1 --- Stability in the Sense of Lyapunov for Suspension Systems --- p.54 / Chapter 2.3.2 --- Stability for four Suspension Systems --- p.57 / Chapter 2.4 --- Optimization --- p.63 / Chapter 2.4.1 --- Single-Degree-of-Freedom Passive System --- p.63 / Chapter 2.4.2 --- Two-Degree-of-Freedom Passive System --- p.65 / Chapter 2.4.3 --- Hybrid Suspension System --- p.67 / Chapter 3 --- SUSPENSION SYSTEM WITH VIBRATION CONTROLLER --- p.71 / Chapter 3.1 --- Two-Degree-of-Freedom Quarter Car Model --- p.71 / Chapter 3.2 --- MR Damper --- p.73 / Chapter 3.3 --- Vibration Controller --- p.75 / Chapter 3.3.1 --- System Controller: Sliding Mode Control --- p.76 / Chapter 3.3.2 --- Damper Controller: Continuous-state Control --- p.83 / Chapter 4 --- SIMULATION RESULTS --- p.85 / Chapter 4.1 --- Transmissibility analysis --- p.86 / Chapter 4.2 --- Simulation --- p.89 / Chapter 4.2.1 --- Test by Bump Excitation --- p.89 / Chapter 4.2.2 --- Test by Random Excitation (White noise) --- p.91 / Chapter 4.2.3 --- Test by Road Elevation Profile --- p.95 / Chapter 5 --- CONCLUSIONS AND FUTURE WORK --- p.99 / Chapter 5.1 --- Summary --- p.99 / Chapter 5.2 --- Future Work and Further Development --- p.100 / Chapter 5.2.1 --- Parametric study of the MR suspension system --- p.100 / Chapter 5.2.2 --- Systematic method for selecting control gains --- p.101 / Chapter 5.2.3 --- New control algorithm --- p.101 / Chapter 5.2.4 --- Extension to half and full car models --- p.102 / Chapter 5.2.5 --- System implementation --- p.102 / appendix / Chapter A.1 --- Additional information of the transmissibility of unsprung mass.… --- p.103 / Chapter A.2 --- Additional figures of the random excitation test: --- p.104 / BIBLIOGRAPHY --- p.106
|
8 |
Análise dinâmica de um sistema de atuação eletromecânica em mecanismo de suspensão mecânica para isolamento de vibrações /Quartaroli, Matheus Mikael. January 2018 (has links)
Orientador: Bento Rodrigues de Pontes Junior / Banca: Nelson Peruzzi / banca: João Eduardo Guarnetti dos Santos / Resumo: Esse trabalho buscou investigar os comportamentos dinâmicos de uma suspensão eletromecânica. Para a configuração dessa suspensão substitui-se o amortecedor viscoso convencional por um amortecedor do tipo eletromecânico. O amortecedor eletromecânico é formado por um transdutor de imã permanente e bobina móvel, no qual se acopla ao sistema mecânico com o eletromagnético. Nos terminais da bobina é introduzido um circuito elétrico RLC ligados em série. Para modelagem e a obtenção das equações dinâmica que descrevem seu movimento utilizou-se o método de Lagrange, que utiliza expressões de energia. Os modelos abordam absorvedores utilizados na indústria automobilística. No trabalho, primeiramente foi investigado a capacidade dos parâmetros elétricos no comportamento do sistema, e verificou-se a influência que a resistência elétrica e a capacitância tem em relação ao deslocamento da massa suspensa de um veículo. Foi realizada, através da função transferência, uma análise da quantidade de energia obtida no sistema elétrico para valores diferentes de resistência elétrica e em comparação foi verificado o ganho da massa suspensa para um movimento harmônico sofrido pela base. Por fim, investigou-se as potências geradas no circuito elétrico e o fator de potência para diferentes valores de capacitância. E também apurou a influência da resistência elétrica na produção de potência ativa. Os resultados mostraram a influência dos parâmetros elétricos no comportamento dinâmico do sistema e na g... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work sought to investigate the dynamic behavior of an electromechanical suspension. For the configuration of this suspension it replaces the conventional viscous damper with a shock absorber of the electromechanical type. The electromechanical damper is formed by a permanent magnet transducer and mobile coil, in which it couples the mechanical system with the electromagnetic. At the terminals of the coil is introduced an RLC electric circuit connected in series. For the modeling and the obtaining of the dynamic equations that describe its movement was uses the Lagrange method, that uses expressions of conservation of energy. The models approach in a simplified way the absorbers used in the automotive industry. In the work, it was first investigated the influence of the electrical parameters on the behavior of the system, it was verifies the power of the electrical resistance and the capacitance have in relation to the displacement of the suspended mass of a vehicle. It was performed, through the transfer function, an analysis of the amount of energy obtained in the electrical system is performed for different values of electrical resistance and in comparison it was verifies the gain of the suspended mass for a harmonic movement suffered by the base. Finally, we investigated the powers generated in the electric circuit and the power factor for different capacitance values. It also determined the influence of electrical resistance on the production of active power. The res... (Complete abstract click electronic access below) / Mestre
|
9 |
Design, control and testing of a novel hybrid active air suspension system for automobilesZhao, Jing January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
|
10 |
Optimisation of a three spring and damper suspensionBerman, Robert January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University
of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of
Master of Science in Engineering.
Johannesburg 2016 / This investigation considers the influence of a three spring and damper suspension system
(SDS) on overall vehicle performance. Three SDS systems are used in high performance
winged racing cars to manage the effects of the aerodynamic forces. The aim of the investigation
was to quantify and compare the performance of a three SDS system to that
of a conventional two SDS system. The investigation was carried out on the Bailey Cars
LMP2 race car. Physical track testing was conducted on Zwartkops Raceway to measure
the vehicle’s performance, with further testing conducted on the vehicle’s tyres. A software
model of the vehicle and tyres was then created in ADAMS/Car, with models for the conventional
two SDS system, as well as the three SDS system. The ADAMS/Car model was
then validated against the test data. A Design of Experiments approach was used to investigate
the influence of the parameters in both the suspension models. The optimal set of
suspension parameters, that maximised vehicle performance on Zwartkops Raceway, was
then identified. The performance of the optimal suspension systems was then compared to
quantify the effect of the three SDS system. It was found that the optimised three SDS system
travelled 4.38 m less than the optimal two SDS in a 60 second simulation on Zwartkops
Raceway. However, the three SDS was effectively able to isolate the pitch and roll stiffness
of the vehicle. The optimal three SDS had a greater pitch stiffness and less roll stiffness than
the two SDS. This is significant for winged vehicles where aerodynamic forces are highly
sensitive to vehicle pitch, such as the Bailey Cars LMP2 race car, allowing for a soft wheel
rate without sacrificing the pitch stiffness of the vehicle. / MT2017
|
Page generated in 0.1319 seconds