Spelling suggestions: "subject:"automorphic forma"" "subject:"ectomorphic forma""
21 |
Lifting from SL(2) to GSpin(1,4)Pitale, Ameya, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 105-107).
|
22 |
Chiral Principal Series CategoriesRaskin, Samuel David 06 June 2014 (has links)
This thesis begins a study of principal series categories in geometric representation theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in the unramified principal series category. This provides an alternative approach to the Arkhipov-Bezrukavnikov theory of Iwahori-Whittaker sheaves that exploits the geometry of the Feigin-Frenkel semi-infinite flag manifold. / Mathematics
|
23 |
An integral representation of automorphic L-function for quasi-split unitary groups /Qin, Yujun. January 2004 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 61-62). Also available in electronic version. Access restricted to campus users.
|
24 |
The twisted tensor L-function of GSp(4)Young, Justin. January 2009 (has links)
Thesis (Ph. D.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 128-131).
|
25 |
Topics on the Spectral Theory of Automorphic FormsBelt, Dustin David 12 July 2006 (has links) (PDF)
We study the analytic properties of the Eisenstein Series of $frac {1}{2}$-integral weight associated with the Hecke congruence subgroup $Gamma_0(4)$. Using these properties we obtain asymptotics for sums of certain Dirichlet $L$-series. We also obtain a formula reducing the study of Selberg's Eigenvalue Conjecture to the study of the nonvanishing of the Eisenstein Series $E(z,s)$ for Hecke congruence subgroups $Gamma_0(N)$ at $s=frac {1+i}{2}$.
|
26 |
On Fourier Transforms and Functional Equations on GL(2)William Sokurski (13176186) 29 July 2022 (has links)
<p>We consider a novel setting for local harmonic analysis on reductive groups motivated by Langlands functoriality conjecture. To this end, we characterize certain non-linear Schwartz spaces on tori and reductive groups in spectral terms, and develop some of their structure in the unramified case, and we derive estimates of their moderate growth at infinity. We also consider non-linear Fourier transforms, and calculate their action on tame supercuspidal representations of $GL_2(F)$ in terms of inducing cuspidal data.</p>
|
27 |
Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial PeriodsDaughton, Austin James Chinault January 2012 (has links)
Since Hecke first proved his correspondence between Dirichlet series with functional equations and automorphic forms, there have been a great number of generalizations. Of particular interest is a generalization due to Bochner that gives a correspondence between Dirichlet series with any finite number of poles that satisfy the classical functional equation and automorphic integrals with (finite) log-polynomial sum period functions. In this dissertation, we extend Bochner's result to Dirichlet series with finitely many essential singularities. With some restrictions on the underlying group and the weight, we also prove a correspondence for Dirichlet series with infinitely many poles. For this second correspondence, we provide a technique to approximate automorphic integrals with infinite log-polynomial sum period functions by automorphic integrals with finite log-polynomial period functions. / Mathematics
|
28 |
Arithmetic and hyperbolic structures in string theory / Structures arithmétiques et hyperboliques en théorie des cordesPersson, Daniel 12 June 2009 (has links)
Résumé anglais: <p><p>This thesis consists of an introductory text followed by two separate parts which may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of spacelike singularities (the BKL-limit). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be mapped to an auxiliary problem given in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of gravity. We investigate the modification of the billiard dynamics when the original gravitational theory is formulated on a compact spatial manifold of arbitrary topology, revealing fascinating mathematical structures known as galleries. We further use the conjectured hyperbolic symmetry E10 to generate and classify certain cosmological (S-brane) solutions in eleven-dimensional supergravity. Finally, we show in detail that eleven-dimensional supergravity and massive type IIA supergravity are dynamically unified within the framework of a geodesic sigma model for a particle moving on the infinite-dimensional coset space E10/K(E10). <p><p>Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are typically given by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by moduli-dependent functions which are manifestly invariant under G(Z), known as automorphic forms. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on a special class of functions known as (non-holomorphic) Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also discuss the possibility that certain generalized Eisenstein series, which are covariant under the maximal compact subgroup K(G), could play a role in determining the exact effective action for toroidally compactified higher derivative corrections. Finally, we propose that in the case of rigid Calabi-Yau compactifications in type IIA string theory, the exact universal hypermultiplet moduli space exhibits a quantum duality group given by the emph{Picard modular group} SU(2,1;Z[i]). To verify this proposal we construct an SU(2,1;Z[i])-invariant Eisenstein series, and we present preliminary results for its Fourier expansion which reveals the expected contributions from D2-brane and NS5-brane instantons. <p><p>/<p><p>Résumé francais: <p><p>Cette thèse est composée d'une introduction suivie de deux parties qui peuvent être lues indépendemment. Dans la première partie, nous analysons des structures hyperboliques apparaissant dans l'étude de la gravité au voisinage d'une singularité de type espace (la limite BKL). Dans cette limite, les points spatiaux se découplent et la dynamique suit un comportement ultralocal qui peut être reformulé en termes d'un billiard hyperbolique (qui peut être chaotique). Dans toutes les supergravités qui sont des limites de basse énergie de théories de cordes ou de la théorie M, la dynamique du billiard prend place à l'intérieur des chambres de Weyl fondamentales de certaines algèbres de Kac-Moody hyperboliques, ce qui suggère que ces algèbres correspondent à des symétries cachées de dimension infinie de la gravité. Nous examinons comment la dynamique du billard est modifiée quand la théorie de gravité originale est formulée sur une variété spatiale compacte de topologie arbitraire, révélant ainsi de fascinantes structures mathématiques appelées galleries. De plus, dans le cadre de la supergravité à onze dimensions, nous utilisons la symétrie hyperbolique conjecturée E10 pour engendrer et classifier certaines solutions cosmologiques (S-branes). Finalement, nous montrons en détail que la supergravité à onze dimensions et la supergravité de type IIA massive sont dynamiquement unifiées dans le contexte d'un modèle sigma géodesique pour une particule se déplaçant sur l'espace quotient de dimension infinie E10/K(E10).<p><p><p>La deuxième partie de cette thèse est consacrée à étudier comment les dualités U en théorie des cordes fournissent des contraintes puissantes sur les corrections quantiques perturbatives et non perturbatives. Ces dualités sont typiquement données par des groupes arithmétiques G(Z) dont il est conjecturé qu'ils préservent l'action effective. Les couplages exacts sont donnés par des fonctions des moduli qui sont manifestement invariantes sous G(Z), et qu'on appelle des formes automorphiques. Nous discutons en détail différentes méthodes de construction de ces formes automorphiques, en insistant particulièrement sur une classe spéciale de fonctions appelées séries d'Eisenstein (non holomorphiques). Nous présentons comme exemples les cas de SL(2,Z) et SL(3,Z), qui sont physiquement pertinents. Nous construisons les séries d'Eisenstein correspondantes et leurs expansions de Fourier (non abéliennes). Nous discutons également la possibilité que certaines séries d'Eisenstein généralisées, qui sont covariantes sous le sous-groupe compact maximal, pourraient jouer un rôle dans la détermination des actions effectives exactes pour les théories incluant des corrections de dérivées supérieures compactifiées sur des tores.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
29 |
Grande image de Galois pour familles p-adiques de formes automorphes de pente positive / Big Galois image for p-adic families of positive slope automorphic formsConti, Andrea 13 July 2016 (has links)
Soit g = 1 ou 2 et p > 3 un nombre premier. Pour le groupe symplectique GSp2g, les systèmes de valeurs propres de Hecke apparaissant dans les espaces de formes automorphes classiques, d’un niveau modéré fixé et de poids variable, sont interpolés p-adiquement par un espace rigide analytique, la vari´et´e de Hecke pour GSp2g. Un sous-domaine suffisamment petit de cette variété peut être décrit comme l’espace rigide analytique associé `a une algèbre profinie T. Une composante irréductible de T est d´efinie par un anneau profini I et un morphisme θ : T → I. Dans le cas résiduellement irréductible on peut associer `a θ une représentation ρθ : Gal(Q/Q) → GSp2g(I). On étudie l’image de ρθ quand θ décrit une composante de pente positive de T. Pour g = 1 il s’agit d’un travail en commun avec A. Lovita et J. Tilouine. On suppose que g = 1 o`u que g = 2 et θ est résiduellement de type cube sym2trique. On montre que Im ρθ est “grande” et que sa taille est li´ee aux “congruences fortuites” de θ avec les transferts de familles pour groupes de rang plus petit. Plus précisement, on agrandit un sous-anneau I0de I[1/p] en un anneau B et on définit une sous-algèbre de Lie G de gsp2g(B) associée `a Im ρθ. On prouve qu’il existe un idéal non-nul l de I0 tel que l · sp2g(B) ⊂ G. Pour g = 1 les facteurs premiers de l correspondent aux points CM de la famille θ. Pour g = 2 les facteurs premiers de l correspondent `a des congruences fortuites de θ avec des sous-familles de dimension 0 ou 1, obtenues par des transferts de type cube sym´etrique de points ou familles de la courbe de Hecke pour GL2. / Let g = 1 or 2 and p > 3 be a prime. For the symplectic group GSp2g the Hecke eigensystems appearing in the spaces of classical automorphic forms, of a fixed tame level and varying weight, are p-adically interpolated by a rigid analytic space, the GSp2g-eigenvariety. A sufficiently small subdomain of the eigenvariety can be described as the rigid analytic space associated with a profinite algebra T. An irreducible component of T is defined by a profinite ring I and a morphism θ : T → I. In the residually irreducible case we can attach to θ a representation ρθ : Gal(Q/Q) → GSp2g(I). We study the image of ρθ when θ describes a positive slope component of T. In the case g = 1 this is a joint work with A. Iovita and J. Tilouine. Suppose either that g = 1 or that g = 2 and θ is residually of symmetric cube type. We prove that Im ρθ is “big” and that its size is related to the “accidental congruences” of θ with the subfamilies that are obtained as lifts of families for groups of smaller rank. More precisely, we enlarge a subring I0 of I[1/p] to a ring B and we define a Lie subalgebra G of gsp2g(B) associated with Im ρθ. We prove that there exists a non-zero ideal l of I0 such that l · sp2g(B) ⊂ G. For g = 1 the prime factors of l correspond to the CM points of the family θ. Such points do not define congruences between θ and a CM family, so we call them accidental congruence points. For g = 2 the prime factors of l correspond to accidental congruences of θ with subfamilies of dimension 0 or 1 that are symmetric cube lifts of points or families of the GL2-eigencurve.
|
30 |
Computing spectral data for Maass cusp forms using resonanceSavala, Paul 01 May 2016 (has links)
The primary arithmetic information attached to a Maass cusp form is its Laplace eigenvalue. However, in the case of cuspidal Maass forms, the range that these eigenvalues can take is not well-understood. In particular it is unknown if, given a real number r, one can prove that there exists a primitive Maass cusp form with Laplace eigenvalue 1/4 + r2. Conversely, given the Fourier coefficients of a primitive Maass cusp form f on Γ0(D), it is not clear whether or not one can determine its Laplace eigenvalue. In this paper we show that given only a finite number of Fourier coefficients one can first determine the level D, and then compute the Laplace eigenvalue to arbitrarily high precision. The key to our results will be understanding the resonance and rapid decay properties of Maass cusp forms. Let f be a primitive Maass cusp form with Fourier coefficients λf (n). The resonance sum for f is given by SX(f;α;β) = Εn≥1λf(n)‑Φ(n/X) e(αnβ) where φ ∈ Cc∞((1, 2)) is a Schwartz function and α ∈ R and β, X > 0 are real numbers. Sums of this form have been studied for many different classes of functions f, including holomorphic modular forms for SL(2, Z), and Maass cusp forms for SL(n,Z). In this paper we take f to be a primitive Maass cusp form for a congruence subgroup Γ0(D) ⊂ SL(2, Z). Thus our result extends the family of automorphic forms for which their resonance properties are understood. Similar analysis and algorithms can be easily implemented for holomorphic cusp forms for Γ0(D). Our techniques include Voronoi summation, weighted exponential sums, and asymptotics expansions of Bessel functions. We then use these estimates in a new application of resonance sums. In particular we show that given only limited information about a Maass cusp form f (in particular a finite list of high Fourier coefficients), one can determine its level and estimate its spectral parameter, and thus its Laplace eigenvalue. This is done using a large parallel computing cluster running MATLAB and Mathematica
|
Page generated in 0.0763 seconds