Spelling suggestions: "subject:"autonomous emergency braking (AEB)"" "subject:"autonomous emergency raking (AEB)""
1 |
Simulation and time-series analysis for Autonomous Emergency Braking systems / Simulering och tidsserie-analys för Autonoma nödbromsning systemXu, Zhiying January 2021 (has links)
One central challenge for Autonomous Driving (AD) systems is ensuring functional safety. This is affected by all parts of vehicle automation systems: environment perception, decision making, and actuation. The AD system manages its activity towards achieving its goals to maintain in the safety domain, upon an environment using observation through sensors and consequent actuators. Therefore, this research investigates the operational safety for the AD system. In this research, a simulation for the Autonomous Emergency Braking (AEB) system and a simple scenario are constructed on CARLA, an open-source simulator for autonomous driving systems, to investigate the factors that impact the performance of the AEB system. The time-series data that influence the AEB are collected and fed into three time-series analysis algorithms, Autoregressive Integrated Moving Average model (ARIMA), regression tree and Long short-term memory (LSTM), to select a suitable time-series algorithm to be used for the AEB system. The results show that weather, the measurement range of the sensors, and noise can affect the results of the AEB system. After comparing the performance of these three time-series algorithms through contrasting the recall and precision of these three algorithms to detect noise in the data, the results can be obtained that LSTM has the better performance for long-term analysis. And ARIMA is more suitable for short-term time-series analysis. LSTM is chosen to analyze the time-series data, since the long-term time-series analysis is necessary for the AEB system and it can detect the noise in the variables of the AEB system with better performance. / En central utmaning för AD system är att säkerställa funktionell säkerhet. Detta påverkas av alla delar av fordonsautomatiseringssystem: miljöuppfattning, beslutsfattande och aktivering. AD -systemet hanterar sin aktivitet för att uppnå sina mål att upprätthålla inom säkerhetsområdet, i en miljö som använder observation genom sensorer och därav följande ställdon. Därför undersöker denna forskning den operativa säkerheten för AD systemet. I denna forskning konstrueras en simulering för AEB -systemet och ett enkelt scenario på CARLA, en simulator med öppen källkod för autonoma körsystem, för att undersöka de faktorer som påverkar prestandan för AEB systemet. Tidsseriedata som påverkar AEB samlas in och matas in i tre tidsserieanalysalgoritmer, ARIMA, regressionsträd och LSTM, för att välja en lämplig tidsserie-algoritm som ska används för AEB systemet. Resultaten visar att väder, mätområdet för sensorerna och brus kan påverka resultaten av AEB systemet. Efter att ha jämfört prestandan för dessa tre tidsserie-algoritmer genom att kontrastera återkallelsen och precisionen för dessa tre algoritmer för att detektera brus i data kan resultaten erhållas att LSTM har bättre prestanda för långsiktig analys. Och ARIMA är mer lämpad för korttidsanalyser i tidsserier. LSTM väljs för att analysera tidsseriedata, eftersom långsiktig tidsserieanalys är nödvändig för AEB systemet och det kan detektera bruset i variablerna i AEB system med bättre prestanda.
|
Page generated in 0.0625 seconds