• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 46
  • 46
  • 13
  • 11
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Robot Navigation Using Velocity Potential Fields and Particle Filters for Obstacle Avoidance

Bai, Jin January 2015 (has links)
In this thesis, robot navigation using the Particle Filter based FastSLAM approach for obstacle avoidance derived from a modified Velocity Potential Field method was investigated. A switching controller was developed to deal with robot’s efficient turning direction when close to obstacles. The determination of the efficient turning direction is based on the local map robot derived from its on board local sensing. The estimation of local map and robot path was implemented using the FastSLAM approach. A particle filter was utilized to obtain estimated robot path and obstacles (local map). When robot sensed only obstacles, the estimated robot positions was regarding to obstacles based the measurement of the distance between the robot and obstacles. When the robot detected the goal, estimation of robot path will switch to estimation with regard to the goal in order to obtain better estimated robot positions. Both simulation and experimental results illustrated that estimation with regard to the goal performs better than estimation regarding only to obstacles, because when robot travelled close to the goal, the residual error between estimated robot path and the ideal robot path becomes monotonously decreasing. When robot reached the goal, the estimated robot position and the ideal robot position converge. We investigated our proposed approach in two typical robot navigation scenarios. Simulations were accomplished using MATLAB, and experiments were conducted with the help of both MATLAB and LabVIEW. In simulations and experiments, the robot successfully chose efficiently turning direction to avoid obstacles and finally reached the goal.
22

Realizace lokalizačního systému pro mobilní robot B2 / Localization system for mobile robot B2

Korytár, Lukáš January 2018 (has links)
The master’s thesis implements localization and navigation routines for mobile robot B2 in order to operate autonomously in an environment described by a road map only. The ROS framework was used for developing new software. The research part describes possible approaches to localization problem and summarizes ROS packages with localization and navigation software. The following part includes communication with the robot’s sensor modules and data processing from LIDAR, IMU and camera. The localization package robot_localization based on Kalman filter is implemented and setting of the navigation stack navigation is proposed, aiming to robot’s autonomous outdoor navigation. Implemented functions were tested in park environment and they are evaluated in this master's thesis too.
23

Navigace mobilního robotu B2 ve venkovním prostředí / Navigation of B2 mobile robot in outdoor environment

Hoffmann, David January 2019 (has links)
This master’s thesis deals with the navigation of a mobile robot that uses the ROS framework. The aim is to improve the ability of the existing B2 robot to move autonomously outdoors. The theoretical part contains a description of the navigation core, which consists of the move_base library and the packages used for planning. The practical part describe the aws of the existing solution, the design and implementation of changes and the results of subsequent testing in the urban park environment.
24

Algorithmes SLAM : Vers une implémentation embarquée / SLAM Algorithms : Towards embedded implementations

Abouzahir, Mohamed 25 February 2017 (has links)
La navigation autonome est un axe de recherche principal dans le domaine de la robotique mobile. Dans ce contexte, le robot doit disposer des algorithmes qui lui permettent d’évoluer de manière autonome dans des environnements complexes et inconnus. Les algorithmes de SLAM permettent à un robot de cartographier son environnement tout en se localisant dans l’espace. Les algorithmes SLAM sont de plus en plus performants, mais aucune implémentation matérielle ou architecturale complète n’a eu. Une telle implantation d’architecture doit prendre en considération la consommation d’énergie, l’embarquabilité et la puissance de calcul. Ce travail scientifique vise à évaluer des systèmes embarqués impliquant de la localisation ou reconstruction de scène. La méthodologie adoptera une approche A3 (Adéquation Algorithme Architecture) pour améliorer l’efficacité de l’implantation des algorithmes plus particulièrement pour des systèmes à fortes contraintes. Le système SLAM embarqué doit disposer d’une architecture électronique et logicielle permettant d’assurer la production d’information pertinentes à partir de données capteurs, tout en assurant la localisation de l’embarquant dans son environnement. L’objectif est donc de définir, pour un algorithme choisi, un modèle d’architecture répondant aux contraintes de l’embarqué. Les premiers travaux de cette thèse ont consisté à explorer les différentes approches algorithmiques permettant la résolution du problème de SLAM. Une étude plus approfondie de ces algorithmes est réalisée. Ceci nous a permet d’évaluer quatre algorithmes de différente nature : FastSLAM2.0, ORB SLAM, RatSLAM et le SLAM linéaire. Ces algorithmes ont été ensuite évalués sur plusieurs architectures pour l’embarqué afin d’étudier leur portabilité sur des systèmes de faible consommation énergétique et de ressources limitées. La comparaison prend en compte les temps d’exécutions et la consistance des résultats. Après avoir analysé profondément les évaluations temporelles de chaque algorithme, le FastSLAM2.0 est finalement choisi, pour un compromis temps d’exécution-consistance de résultat de localisation, comme candidat pour une étude plus approfondie sur une architecture hétérogène embarquée. La second partie de cette thèse est consacré à l’étude d’un système embarqué implémentant le FastSLAM2.0 monoculaire dédié aux environnements larges. Une réécriture algorithmique du FastSLAM2.0 a été nécessaire afin de l’adapter au mieux aux contraintes imposées par les environnements de grande échelle. Dans une démarche A3, le FastSLAM2.0 a été implanté sur une architecture hétérogène CPU-GPU. Grâce à un partitionnement efficace, un facteur d’accélération global de l’ordre de 22 a été obtenu sur une architecture récente dédiée pour l’embarqué. La nature du traitement de l’algorithme FastSLAM2.0 pouvait bénéficier d’une architecture fortement parallèle. Une deuxième instance matérielle basée sur une architecture programmable FPGA est proposée. L’implantation a été réalisée en utilisant des outils de synthèse de haut-niveau afin de réduire le temps de développement. Une comparaison des résultats d’implantation sur cette architecture matérielle par rapport à des architectures à base de GPU a été réalisée. Les gains obtenus sont conséquent, même par rapport aux GPU haut-de-gamme avec un grand nombre de cœurs. Le système résultant peut cartographier des environnements larges tout en garantissant le compromis entre la consistance des résultats de localisation et le temps réel. L’utilisation de plusieurs calculateurs implique d’utiliser des moyens d’échanges de données entre ces derniers. Cela passe par des couplages forts. Ces travaux de thèse ont permis de mettre en avant l’intérêt des architectures hétérogènes parallèles pour le portage des algorithmes SLAM. Les architectures hétérogènes à base de FPGA peuvent particulièrement devenir des candidats potentiels pour porter des algorithmes complexes traitant des données massives. / Autonomous navigation is a main axis of research in the field of mobile robotics. In this context, the robot must have an algorithm that allow the robot to move autonomously in a complex and unfamiliar environments. Mapping in advance by a human operator is a tedious and time consuming task. On the other hand, it is not always reliable, especially when the structure of the environment changes. SLAM algorithms allow a robot to map its environment while localizing it in the space.SLAM algorithms are becoming more efficient, but there is no full hardware or architectural implementation that has taken place . Such implantation of architecture must take into account the energy consumption, the embeddability and computing power. This scientific work aims to evaluate the embedded systems implementing locatization and scene reconstruction (SLAM). The methodology will adopt an approach AAM ( Algorithm Architecture Matching) to improve the efficiency of the implementation of algorithms especially for systems with high constaints. SLAM embedded system must have an electronic and software architecture to ensure the production of relevant data from sensor information, while ensuring the localization of the robot in its environment. Therefore, the objective is to define, for a chosen algorithm, an architecture model that meets the constraints of embedded systems. The first work of this thesis was to explore the different algorithmic approaches for solving the SLAM problem. Further study of these algorithms is performed. This allows us to evaluate four different kinds of algorithms: FastSLAM2.0, ORB SLAM, SLAM RatSLAM and linear. These algorithms were then evaluated on multiple architectures for embedded systems to study their portability on energy low consumption systems and limited resources. The comparison takes into account the time of execution and consistency of results. After having deeply analyzed the temporal evaluations for each algorithm, the FastSLAM2.0 was finally chosen for its compromise performance-consistency of localization result and execution time, as a candidate for further study on an embedded heterogeneous architecture. The second part of this thesis is devoted to the study of an embedded implementing of the monocular FastSLAM2.0 which is dedicated to large scale environments. An algorithmic modification of the FastSLAM2.0 was necessary in order to better adapt it to the constraints imposed by the largescale environments. The resulting system is designed around a parallel multi-core architecture. Using an algorithm architecture matching approach, the FastSLAM2.0 was implemeted on a heterogeneous CPU-GPU architecture. Uisng an effective algorithme partitioning, an overall acceleration factor o about 22 was obtained on a recent dedicated architecture for embedded systems. The nature of the execution of FastSLAM2.0 algorithm could benefit from a highly parallel architecture. A second instance hardware based on programmable FPGA architecture is proposed. The implantation was performed using high-level synthesis tools to reduce development time. A comparison of the results of implementation on the hardware architecture compared to GPU-based architectures was realized. The gains obtained are promising, even compared to a high-end GPU that currently have a large number of cores. The resulting system can map a large environments while maintainingthe balance between the consistency of the localization results and real time performance. Using multiple calculators involves the use of a means of data exchange between them. This requires strong coupling (communication bus and shared memory). This thesis work has put forward the interests of parallel heterogeneous architectures (multicore, GPU) for embedding the SLAM algorithms. The FPGA-based heterogeneous architectures can particularly become potential candidatesto bring complex algorithms dealing with massive data.
25

SCHEDULING AND CONTROL WITH MACHINE LEARNING IN MANUFACTURING SYSTEMS

Sungbum Jun (9136835) 05 August 2020 (has links)
Numerous optimization problems in production systems can be considered as decision-making processes that determine the best allocation of resources to tasks over time to optimize one or more objectives in concert with big data. Among the optimization problems, production scheduling and routing of robots for material handling are becoming more important due to their impacts on system performance. However, the development of efficient algorithms for scheduling or routing faces several challenges. While the scheduling and vehicle routing problems can be solved by mathematical models such as mixed-integer linear programming to find optimal solutions to smallsized problems, they are not applicable to larger problems due to the nature of NP-hard problems. Thus, further research on machine learning applications to those problems is a significant step towards increasing the possibilities and potentialities of field application. In order to create truly intelligent systems, new frameworks for scheduling and routing are proposed to utilize machine learning (ML) techniques. First, the dynamic single-machine scheduling problem for minimization of total weighted tardiness is addressed. In order to solve the problem more efficiently, a decisiontree-based approach called Generation of Rules Automatically with Feature construction and Treebased learning (GRAFT) is designed to extract dispatching rules from existing or good schedules. In addition to the single-machine scheduling problem, the flexible job-shop scheduling problem with release times for minimizing the total weighted tardiness is analyzed. As a ML-based solution approach, a random-forest-based approach called Random Forest for Obtaining Rules for Scheduling (RANFORS) is developed to solve the problem by generating dispatching rules automatically. Finally, an optimization problem for routing of autonomous robots for minimizing total tardiness of transportation requests is analyzed by decomposing it into three sub-problems. In order to solve the sub-problems, a comprehensive framework with consideration of conflicts between routes is proposed. Especially to the sub-problem for vehicle routing, a new local search algorithm called COntextual-Bandit-based Adaptive Local search with Tree-based regression (COBALT) that incorporates the contextual bandit into operator selection is developed. The findings from my research contribute to suggesting a guidance to practitioners for the applications of ML to scheduling and control problems, and ultimately to lead the implementation of smart factories.
26

Indoor Geo-location And Tracking Of Mobile Autonomous Robot

Ramamurthy, Mahesh 01 January 2005 (has links)
The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates.
27

Lane Detection for DEXTER, an Autonomous Robot, in the Urban Challenge

McMichael, Scott Thomas 25 January 2008 (has links)
No description available.
28

Prostředí pro vývoj modulárních řídících systémů v robotice / Prostředí pro vývoj modulárních řídících systémů v robotice

Petrůšek, Tomáš January 2010 (has links)
The subject of the thesis is the design and implementation of a modular control system environment, which could be used in robotics. Both autonomous and guided robots are supported. The higher-level software com- ponents like localization, steering, decision making, etc. are effectively sepa- rated from the underlying hardware devices and their communication protocols in the environment. Based on the layered design, hardware-independent algo- rithms can be implemented. These can run on different hardware platforms just by exchanging specific device drivers. Written in C++ using standard libraries, the final software is highly portable and extensible. Support for new platforms and hardware modules can be implemented easily. The whole sys- tem was tested on two robots and the particular instances of the systems built using this development environment are included in the solution and partially described in the thesis.
29

The Hippocampus code : a computational study of the structure and function of the hippocampus

Rennó Costa, César 17 September 2012 (has links)
Actualment, no hi ha consens científic respecte a la informació representada en la activitat de les célules del hipocamp. D'una banda, experiments amb humans sostenen una visión de la funció de l'hipocamp com a un sistema per l'emmagatzematge de memóries episódiques, mentre que la recerca amb rodents enfatitza una visió com a sistema cognitiu espacial. Tot i que existeix abundant evidència experimental que indica una possible sobreposició d'ambdues teories, aquesta dissociació també es manté en part en base a dades fisiològiques aparentment incompatibles. Aquesta tèsi poposa que l'hippocamp té un rol funcional que s'hauría d'analitzar en termes de la seva estructura i funció, enlloc de mitjança estudis correlació entre activitat neuronal i comportament. La identificació d'un codi a l'hipocamp, es a dir, el conjunt de principis computacionals que conformen les transformacions d'entrada i sortida de l'activitat neuronal, hauría de proporcionar un explicació unificada de la seva funció. En aquesta tèsi presentem un model teòric que descriu quantitativament i que interpreta la selectivitat de certes regions de l'hipocamp en funció de variables espaials i no-espaials, tal i com observada en experiments amb rates. Aquest resultat suggereix que multiples aspectes de la memòria expressada en humans i rodents deriven d'uns mateixos principis. Per aquest motius, proposem nous principis per la memòria, l'auto-completat de patrons i plasticitat. A més, mitjançant aplicacions robòtiques, creem d'un nexe causal entre el circuit neural i el comportament amb el que demostrem la naturalesa conjuntiva de la selectivitat neuronal observada en el hipocamp es necessària per la solució de problemes pràctics comuns, com per example la cerca d'aliments. Tot plegat, aquests resultats avancen en l'idea general de que el codi de l'hipocamp es genèric i aplicable als diversos tipus de memòries estudiades en la literatura. / There is no consensual understanding on what the activity of the hippocampus neurons represents. While experiments with humans foster a dominant view of an episodic memory system, experiments with rodents promote its role as a spatial cognitive system. Although there is abundant evidence pointing to an overlap between these two theories, the dissociation is sustained by conflicting physiological data. This thesis proposes that the functional role of the hippocampus should be analyzed in terms of its structure and function rather than by the correlation of neuronal activity and behavioral performance. The identification of the hippocampus code, i.e. the set of computational principles underlying the input-output transformations of neural activity, might ultimately provide a unifying understanding of its role. In this thesis we present a theoretical model that quantitatively describes and interprets the selectivity of regions of the hippocampus to spatial and non-spatial variables observed in experiments with rats. The results suggest that the multiple aspects of memory expressed in human and rodent data are derived form similar principles. This approach suggests new principles for memory, pattern completion and plasticity. In addition, by creating a causal tie between the neural circuitry and behavior through a robotic control framework we show that the conjunctive nature of neural selectivity observed in the hippocampus is needed for effective problem solving in real-world tasks such as foraging. Altogether, these results advance the concept that the hippocampal code is generic to the different aspects of memory highlighted in the literature.
30

Stratégie de navigation sûre dans un environnement industriel partiellement connu en présence d’activité humaine / Safe navigation strategy in a partially known industrial environment in the presence of human activity

Burtin, Gabriel Louis 26 June 2019 (has links)
Dans ces travaux, nous proposons un système sûr pour la localisation de robot mobile en milieu intérieur structuré. Le principe repose sur l’utilisation de deux capteurs (lidar et caméra monoculaire) combinés astucieusement pour assurer une rapidité de calcul et une robustesse d’utilisation. En choisissant des capteurs reposant sur des principes physiques différents, les chances qu'ils se retrouvent simultanément perturbés sont minimes. L’algorithme de localisation doit être rapide et efficient tout en conservant la possibilité de fournir un mode dégradé dans éventualité où l’un des capteurs serait endommagé. Pour atteindre cet objectif de localisation rapide, nous optimisons le traitement des données à divers niveaux tels que la quantité de données à traiter ou l’optimisation algorithmique. Nous opérons une approximation polygonale des données du lidar 2D ainsi qu’une détection des segments verticaux dans l’image couleur. Le croisement de ces deux informations, à l’aide d’un filtre de Kalman étendu, nous donne alors une localisation fiable. En cas de perte du lidar, le filtre de Kalman peut toujours fonctionner et, en cas de perte de la caméra, le robot peut faire un recalage laser avec le lidar. Les données des deux capteurs peuvent également servir à d’autres objectifs. Les données lidar permettent d’identifier les portes (points de collision potentiels avec des humains), les données caméra peuvent permettre la détection et le suivi des piétons. Les travaux ont été majoritairement menés et validés avec un simulateur robotique avancé (4DV-Sim) puis ont été confirmés par des expériences réelles. Cette méthodologie permet à la fois de développer nos travaux et de valider et améliorer le caractère fonctionnel de cet outil de robotique. / In this work, we propose a safe system for robot navigation in an indoor and structured environment. The main idea is the use of two combined sensors (lidar and monocular camera) to ensure fast computation and robustness. The choice of these sensors is based on the physic principles behind their measures. They are less likely to go blind with the same disturbance. The localization algorithm is fast and efficient while keeping in mind the possibility of a downgraded mode in case of the failure of one sensor. To reach this objective, we optimized the data processing at different levels. We applied a polygonal approximation to the 2D lidar data and a vertical contour detection to the colour image. The fusion of these data in an extended Kalman filter provides a reliable localization system. In case of a lidar failure, the Kalman filter still works, in case of a camera failure the robot can rely upon a lidar scan matching. Data provided by these sensors can also deserve other purposes. The lidar provides us the localization of doors, potential location for encounter with humans. The camera can help to detect and track humans. This work has been done and validated using an advanced robotic simulator (4DV-Sim), then confirmed with real experiments. This methodology allowed us to both develop our ideas and confirm the usefulness of this robotic tool.

Page generated in 0.0598 seconds