Spelling suggestions: "subject:"autoregressive model"" "subject:"autoregressives model""
81 |
Variance of Difference as Distance Like Measure in Time Series Microarray Data ClusteringMukhopadhyay, Sayan January 2014 (has links) (PDF)
Our intention is to find similarity among the time series expressions of the genes in microarray experiments. It is hypothesized that at a given time point the concentration of one gene’s mRNA is directly affected by the concentration of other gene’s mRNA, and may have biological significance. We define dissimilarity between two time-series data set as the variance of Euclidean distances of each time points. The large numbers of gene expressions make the calculation of variance of distance in each point computationally expensive and therefore computationally challenging in terms of execution time. For this reason we use autoregressive model which estimates nineteen points gene expression to a three point vector. It allows us to find variance of difference between two data sets without point-to-point matching. Previous analysis from the microarray experiments data found that 62 genes are regulated following EGF (Epidermal Growth Factor) and HRG (Heregulin) treatment of the MCF-7 breast cancer cells. We have chosen these suspected cancer-related genes as our reference and investigated which additional set of genes has similar time point expression profiles. Keeping variance of difference as a measure of distance, we have used several methods for clustering the gene expression data, such as our own maximum clique finding heuristics and hierarchical clustering. The results obtained were validated through a text mining study. New predictions from our study could be a basis for further investigations in the genesis of breast cancer. Overall in 84 new genes are found in which 57 genes are related to cancer among them 35 genes are associated with breast cancer.
|
82 |
Essays in functional econometrics and financial marketsTsafack-Teufack, Idriss 07 1900 (has links)
Dans cette thèse, j’exploite le cadre d’analyse de données fonctionnelles et développe
l’analyse d’inférence et de prédiction, avec une application à des sujets sur les marchés
financiers. Cette thèse est organisée en trois chapitres.
Le premier chapitre est un article co-écrit avec Marine Carrasco. Dans ce chapitre,
nous considérons un modèle de régression linéaire fonctionnelle avec une variable
prédictive fonctionnelle et une réponse scalaire. Nous effectuons une comparaison
théorique des techniques d’analyse des composantes principales fonctionnelles (FPCA)
et des moindres carrés partiels fonctionnels (FPLS). Nous déterminons la vitesse de
convergence de l’erreur quadratique moyen d’estimation (MSE) pour ces méthodes.
Aussi, nous montrons cette vitesse est sharp. Nous découvrons également que le biais
de régularisation de la méthode FPLS est plus petit que celui de FPCA, tandis que
son erreur d’estimation a tendance à être plus grande que celle de FPCA. De plus,
nous montrons que le FPLS surpasse le FPCA en termes de prédiction avec moins de
composantes.
Le deuxième chapitre considère un modèle autorégressif entièrement fonctionnel
(FAR) pour prèvoir toute la courbe de rendement du S&P 500 a la prochaine journée.
Je mène une analyse comparative de quatre techniques de Big Data, dont la méthode de
Tikhonov fonctionnelle (FT), la technique de Landweber-Fridman fonctionnelle (FLF), la
coupure spectrale fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS).
La vitesse de convergence, la distribution asymptotique et une stratégie de test statistique
pour sélectionner le nombre de retard sont fournis. Les simulations et les données réelles
montrent que les méthode FPLS performe mieux les autres en terme d’estimation du
paramètre tandis que toutes ces méthodes affichent des performances similaires en termes
de prédiction.
Le troisième chapitre propose d’estimer la densité de neutralité au risque (RND) dans
le contexte de la tarification des options, à l’aide d’un modèle fonctionnel. L’avantage de
cette approche est qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible
d’éviter toute sorte de paramétrisation. L’estimation conduit à un problème d’inversibilité
et la technique fonctionnelle de Landweber-Fridman (FLF) est utilisée pour le surmonter. / In this thesis, I exploit the functional data analysis framework and develop inference,
prediction and forecasting analysis, with an application to topics in the financial market.
This thesis is organized in three chapters.
The first chapter is a paper co-authored with Marine Carrasco. In this chapter,
we consider a functional linear regression model with a functional predictor variable
and a scalar response. We develop a theoretical comparison of the Functional Principal
Component Analysis (FPCA) and Functional Partial Least Squares (FPLS) techniques.
We derive the convergence rate of the Mean Squared Error (MSE) for these methods. We
show that this rate of convergence is sharp. We also find that the regularization bias of
the FPLS method is smaller than the one of FPCA, while its estimation error tends to
be larger than that of FPCA. Additionally, we show that FPLS outperforms FPCA in
terms of prediction accuracy with a fewer number of components.
The second chapter considers a fully functional autoregressive model (FAR) to forecast
the next day’s return curve of the S&P 500. In contrast to the standard AR(1) model
where each observation is a scalar, in this research each daily return curve is a collection
of 390 points and is considered as one observation. I conduct a comparative analysis
of four big data techniques including Functional Tikhonov method (FT), Functional
Landweber-Fridman technique (FLF), Functional spectral-cut off (FSC), and Functional
Partial Least Squares (FPLS). The convergence rate, asymptotic distribution, and a
test-based strategy to select the lag number are provided. Simulations and real data
show that FPLS method tends to outperform the other in terms of estimation accuracy
while all the considered methods display almost the same predictive performance.
The third chapter proposes to estimate the risk neutral density (RND) for options
pricing with a functional linear model. The benefit of this approach is that it exploits
directly the fundamental arbitrage-free equation and it is possible to avoid any additional
density parametrization. The estimation problem leads to an inverse problem and the
functional Landweber-Fridman (FLF) technique is used to overcome this issue.
|
83 |
Estimation de canal à évanouissements plats dans les transmissions sans fils à relais multibonds / Flat fading channel estimation for multihop relay wireless transmissionsGhandour-Haidar, Soukayna 12 December 2014 (has links)
Cette thèse traite de l'estimation d'un canal de communication radio-mobile multi-bond. La communication entre l'émetteur et le récepteur est ainsi faite par l'intermédiaire de relais (de type « Amplify and-Forward ») en série. Les différents éléments (émetteurs, relais, récepteurs) peuvent être fixes ou mobiles. Chaque lien de communication (chaque bond) est modélisé par un canal de Rayleigh à évanouissements plats, avec un spectre Doppler issu de deux environnements possibles de diffusion : en deux dimensions (2D, amenant le spectre en U de Jakes), ou en trois dimensions (3D, amenant un spectre Doppler plat). L'objectif majeur de la thèse est l'estimation dynamique du canal global issue de la cascade des différents liens. A cette fin, la cascade de canaux est approchée par une modèle auto-régressif du premier ordre (AR (1)), et l'estimation est réalisée à l'aide d'un algorithme standard, le filtre de Kalman. La méthode couramment utilisée dans la littérature pour fixer le paramètre du modèle AR(1) est basée sur un critère de « corrélation matching » (CM). Cependant, nous montrons que pour des canaux à variations lentes, un autre critère basé sur la minimisation de la variance asymptotique (MAV) de la sortie du filtre de Kalman est plus approprié. Pour les deux critères, CM et MAV, cette thèse donne une justification analytique en fournissant des formules approchées de la variance d'estimation par le filtre de Kalman, ainsi que du réglage optimal du paramètre du modèle AR(1). Ces formules analytiques sont données en fonctions des fréquences Doppler et du rapport signal sur bruit, pour les environnements de diffusion 2D et 3D, quel que soit le nombre et le type de bonds (fixe-mobile ou mobile-mobile). Les résultats de simulations montrent un gain considérable en termes de l'erreur quadratique moyenne (MSE) de l'estimateur de canal bien réglé, en particulier pour le scénario le plus courant de canal à évanouissements lents. / This thesis deals with the estimation of the multihop Amplify-and-Forward relay communications. The various objects (transmitter, relays, receivers) can be fixed or mobile. Each link is modeled by a flat fading Rayleigh channel, with a Doppler spectrum resulting from two-dimensional (2D, leading to the U-shape Dopller spectrum) or three-dimensional (3D, leading to a flat Doppler spectrum) scattering environments. The cascade of channel hops is approximated by a first-order autoregressive (AR(1)) model and is tracked by a standard estimation algorithm, the Kalman Filter (KF). The common method used in the literature to tune the parameter of the AR(1) model is based on a Correlation Matching (CM) criterion. However, for slow fading variations, another criterion based on the off-line Minimization of the Asymptotic Variance (MAV) of the KF is shown to be more appropriate. For both the CM and MAV criteria, this thesis gives analytic justification by providing approximated closed-form expressions of the estimation variance in output of the Kalman filter, and of the optimal AR(1) parameter. The analytical results are calculated for given Doppler frequencies and Signal-to-Noise Ratio for both scattering environments, whatever the number and type of transmission hops (Fixed-to-Mobile or Mobile-to-Mobile). The simulation results show a considerable gain in terms of the Mean Square Error (MSE) of the well tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.
|
84 |
Analýza kauzálního vztahu mezi kardiovaskulárními signály / Causal interaction analysis of cardiovascular signalsTiurina, Mariia January 2019 (has links)
Application of the non-invasive methods to detection of the baroreflex sensitivity is a correct way to evaluate the functions of cardiovascular system. This master’s thesis describes the theoretical informations about the problem of baroreflex sensitivity from anatomical, patalogical and clinical views. Theoretical knowledges are foundation for mathematical description of some methods to detection of baroreflx sensitivity in time, frequency and information dimensions. In the practical part of the master’s theses are presented two methods of BRS detection – sequence method based on finding the specific sequences of time series signals and method of application bivariante autoregressive model. Both of methods are implemented in MATLAB. The results of testing data on real data are discussed.
|
Page generated in 0.0815 seconds