Spelling suggestions: "subject:"averaging method. eng"" "subject:"overaging method. eng""
1 |
O método averagin e aplicações /Silva Junior, Jairo Barbosa da. January 2009 (has links)
Orientador: Claudio Aguinaldo Buzzi / Banca: Maurício Firmino Silva Lima / Banca: Marcelo Messias / Resumo: Neste trabalho estudamos o Método Averaging. Este método é uma ferramenta extremamente útil para quantificar o número de ciclos limites que podem bifurcar de uma singularidade do tipo centro de um sistema de equações diferenciais. A parte inicial do trabalho apresenta a Teoria de Aproximação Assintótica e um primeiro contato com o Averaging. Posteriormente apresentamos uma versão do Averaging via a Teoria do Grau de Brouwer. Finalmente fizemos algumas aplicações do método apresentando uma cota superior para o número de ciclos limites que podem bifurcar a partir das órbitas periódicas de centros de um sistema de equações diferenciais. Além disso, mostramos através de exemplos concretos que esta cota superior pode ser realizada. / Abstract: In this work we study the Averaging Method. This method is a useful tool in order to give the maximum number of limit cycles that can bifurcate from a center type singularity of a di®erential equation system. In the first part of the work we present the Asymptotic Approximation Theory and a first view of the averaging. After that, we present a version of the averaging via Brouwer Degree Theory. Finally we give some applications of this method presenting an upper bound for the number of limit cycles that can bifurcate from a center type singularity of a di®erential equation system. Moreover, we show by presenting concrete examples that this upper bound can be realized. / Mestre
|
2 |
O método do Avering via teoria do grau de Brouwer e aplicações /Euzébio, Rodrigo Donizete. January 2011 (has links)
Orientador: Claudio Aguinaldo Buzzi / Banca: Claudio Gomes Pessoa / Banca: Luis Fernando de Osório Mello / Resumo: Nosso objetivo neste trabalho é estudar o método do averaging através do grau topológico de Brouwer e utilizá-lo para investigar o número de ciclos limites que bifurcam de uma singularidade do tipo centro quando perturbamos um sistema de equações diferenciais através de um pequeno parâmetro ε. Começaremos apresentando o método do averaging que aaprece na literatura clássica e algumas aplicações deste. Depois faremos uma breve discussão sobre o grau topológico de Brouwer, seguido do teorema do averaging que faz menção a este conceito. Finalmente, exibiremos algumas aplicações inéditas do método. / Abstract: The aim of this is to study the averaging method using the Brouwer topological degree in order to investigative the number of limit cycles that can bifurcate from a center type singularity when a differential systemas is perturbed by a small parameter ε. To this respect, initially, we present "classical" averaging method and some of its applications. So we introduce the Brouwer topological degree, followed by the averaging theorem. Finally, we show some original applications of the averaging method. / Mestre
|
3 |
Equações com impasse e problemas de perturbação singular /Cardin, Pedro Toniol. January 2011 (has links)
Orientador: Paulo Ricardo da Silva / Banca: João Carlos da Rocha Medrado / Banca: Fernando de Osório Mello / Banca: Claudio Aguinaldo Buzzi / Banca: Vanderlei Minori Horita / Resumo: Neste trabalho estudamos sistemas diferenciais forçados, também conhecidos como sistemas de equações com impasse. Estudamos os casos onde tais sistemas são suaves e os casos onde são possivelmente descontínuos. Usando técnicas de perturbação singular obtemos alguns resultados sobre a dinâmica destes sistemas em vizinhanças dos conjuntos de impasse. No caso suave, a Teoria de Fenichel clássica e crucial para o desenvolvimento dos principais resultados. Para o caso com descontinuidades, uma teoria similar a Teoria de Fenichel 'e desenvolvida. Além disso, estudamos a bifurcação de ciclos limites das órbitas periódicas de um centro diferencial linear quando perturbamos tal centro dentro de uma classe de sistemas diferenciais lineares por partes com impasse / Abstract: In this work we study constrained differential systems, also known as systems of equations with impasse. We study the cases where such systems are smo oth and the cases where they are p ossibly discontinuous. Using singular p erturbation techniques we obtain some results on the dynamic of these systems in neighb orho o ds of the impasse sets. In smo oth case, the classical Fenichel's Theory is crucial for the development of the main results. For the case with discontinuity, a similar theory to Fenichel's Theory is develop ed. Moreover, we study the bifurcation of limit cycles from the p erio dic orbits of a linear differential center when we p erturb such center inside a class of piecewise linear differential systems with impasse / Doutor
|
Page generated in 0.0796 seconds