Spelling suggestions: "subject:"avocado -- atorage"" "subject:"avocado -- 2storage""
1 |
Various storage techniques of plums and avocadosMare, Leon 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2002. / ENGLISH ABSTRACT: Historically the storage of South African plum fruit involved cold storage at single
low temperatures (-O.5°C). The ever present problem of internal breakdown,
however, led to the development of the dual temperature storage regime (a type of
intermittent warming) which was found to restrict the level of internal breakdown.
However, this temperature regime led to the development of or unmasking of gel
breakdown (GB).
During season one it was proposed that 'Songold' and 'Angeleno' plums could be
stored at a single high temperature (7.5°C) during the shipping period (18 days) in
combination with controlled atmospheres (CA). This was compared to the
commercially used dual temperature regime (10 days at -O.5°C and eight days at
7.5°C). During season two the temperature regimes were adjusted to mirror the
storage of the fruit from the date of harvest until the fruit is purchased. During the
shipping period the dual temperature regime and the single high temperature regime
were still compared. It was hypothesised that the fruit could be stored at the higher
temperature in combination with CA during shipping, and this would allow the
ripening of the fruit to be retarded, retaining good quality without exposure to the low,
chilling inducing temperatures associated with the dual temperature regime.
The storage of both plum cultivars at the single high temperature in combination with
CA had a positive influence on delaying the ripening of the fruit. Most noticeable
was the delay of fruit softening and the restriction of colour and GB development of
the 'Songold' plums. Most importantly, these results were achieved without the fruit
being exposed to the low, injurious temperatures associated with the dual temperature
regime. It was, however, concluded that due to the suppressed climacteric trait of
these plums more benefit could be gained from the higher temperature storage in
combination with CA on climacteric plums which display stronger ripening patterns.
In contrast to the plum industry, the use of CA in the storage of avocado fruit has
risen to about 95% of the exported fruit. CA storage of avocados has shown positive
results in retaining fruit firmness, restricting disorder development and extending the
shelf life. Recently, research with l-methylcyclopropene (l-MCP) storage of avocados has been found to be as successful as CA storage and there is a belief that it
will be the answer to storage for the avocado industry once registered for commercial
use.
During the first experiment, 'Fuerte' and 'Hass' avocados were treated with CO2
shocks (C02 levels which greatly exceed the initial intercellular concentrations of CO2
are known as CO2 shock treatments). These shock treatments were done over a series
of three time periods and four CO2 concentrations for the 'Fuerte' avocados and two
time periods and two concentrations for the 'Hass' avocados. Results were
disappointing, as the fruit treated with CO2 were not able to retain their quality.
For the second experiment, 'Fuerte' and 'Hass' avocados were treated with either CA
or I-MCP, or CA and I-MCP in combination. Previous research had identified a
positive synergistic effect when CA and I-MCP were combined, due to the fact that
the treatments act at different points in the ethylene production process.
Both the CA and I-MCP treatments, whether alone or in combination, had positive
results in retaining firmness and extending the shelf life of the fruit. The treatments
were also able to retain the quality of the 'Fuerte' avocados in terms of internal and,
external physiological disorders. 'Hass' avocados, however, are known to be of
excellent internal quality and none of the treatments had a greater percentage of sound
fruit than the fruit which were stored in air. The extended ripening gained by
treatment with I-MCP outweighed any increased loss due to fruit quality and in terms
of the ease of application makes it superior to CA storage. However, before
large-scale commercial application of I-MCP begins, much still needs to be learned
about its use on avocados.
Relative humidity (RH) control, forms an integral part of the storage of many fruit and
vegetables. However, the difficulty in controlling and measuring RH has resulted in it
being largely ignored. Research has shown that storage of fruit and vegetables at RH
levels close to 95% has been able to restrict ripening and chilling injury development
by decreasing the water stress on the fresh commodities during storage.
During the final experiment, 'Fuerte' and 'Hass' avocados were placed at the
commercial storage temperature and a chilling temperature. At each temperature, the
fruit were either stored under a high or a low RH. Results were inconclusive, as the
higher RH showed no signs of restricting chilling injury or any other disorders in the
fruit. / AFRIKAANSE OPSOMMING: In die verlede is pruime in Suid Afrika opgeberg volgens 'n enkeltemperatuur-regime
(-0.5°C). Interne verval (IV) van die pruime was 'n probleem en het gelei tot die
ontwikkeling van die dubbeltemperatuur-opberging regime wat IV verhoed het. Dit
het egter gelei tot die ontwikkeling of ontmaskering vanjelverval (IV).
Vir seisoen een is voorgestel dat die opberging van 'Songold' en 'Angeleno' pruime
gedurende die verskepingstyd (18 dae), teen 'n hoë enkeltemperatuur van 7.5°C
gekombineerd met beheerde atmosfeer (BA) geskied. Dit is vergelyk met die
kommersiële dubbeltemperatuur-opberging regime (10 dae by -0.5°C en agt dae by
7.5°C). Vir seisoen twee is die temperatuur regime aangepas om die opberging van
die vrug vanaf die oesdatum totdat dit deur die verbruiker gekoop word, na te boots.
Tydens die verskepingstyd is die dubbeltemperatuur-opberging regime steeds
vergelyk met die enkeltemperatuur opberging. Die gestelde hipotese is dat die vrugte
gedurende verskeping by hoë enkeltemperatuur gekombineerd met BA opgeberg kon
word. Sodoende word rypwording vertraag en die kwaliteit van die vrug behou sonder
dat die vrugte blootgestel word aan temperature wat koueskade sal veroorsaak.
By beide kultivars het 'n hoë enkeltemperatuur, gekombineer met BA opberging, die
rypwording van die vrugte vertraag. Mees opmerklik was die vertraging van die
sagwording van altwee kultivars asook die vertraging van kleur ontwikkeling en JV
van die 'Songold' pruime. Wat van belang is, is dat die resultate bereik is sonder dat
die vrugte blootgestel was aan die lae temperature wat koueskade veroorsaak. Die
onderdrukte klimakterium wat met 'Songold' en 'Angeleno' pruime verkry is toon dat
pruim kultivars met sterker rypwordingspatrone meer sal baat deur opberging by hoë
temperature saam met BA.
In teenstelling met die pruim bedryf, word omtrent 95% van die avokado vrugte wat
deur Suid Afrika uitgevoer word onder BA verskeep. BA opberging toon vir baie jare
al dat dit 'n positiewe invloed op die vertraging van sagwording, die behoud van
gehalte en die verlenging van die raklewe van avokados het. Onlangse navorsing het aangetoon dat I-metielsiklopropeen (I-MCP) 'n produk is wat BA opberging se plek
kan inneem. Daar word geglo dit is die antwoord vir avokado opberging in Suid
Afrika.
Vir die eerste eksperiment het 'Fuerte' en 'Hass' avokados 'n CO2 skok behandeling
ontvang (C02 vlakke wat die interne sellulêre konsentrasie van C02 oorskrei). Die
skok behandelings was oor drie tydperke en vier konsentrasie vlakke gedoen vir die
'Fuerte' avokados en oor twee tydperke en twee konsentrasies vir die 'Hass'
avokados. Die resultate was teleurstellend omdat die vrugte wat met die C02
behandel is nie hul gehalte kon behou nie.
Gedurende die tweede eksperiment, was 'Fuerte' en 'Hass' avokados met BA of
I-MCP, alleen of in kombinasie behandel. Navorsing het bewys dat daar 'n dubbelle
effek is as BA en I-MCP saam gebruik word, omdat hulle etileen produksie deur
verskillende maniere beheer word.
Beide die BA en I-MCP behandelings, alleen of in kombinasie, het 'n positiewe effek
uitgeoefen op die vrug deurdat dit fermheid behou en die raklewe verleng het. Die
behandelinge het ook die kwaliteit van die 'Fuerte' avokados behou. 'Hass' is 'n
avokado wat alreeds 'n baie goeie interne kwaliteit het. Vir dié rede het die vrugte
wat net in lug opgeberg was die beste interne kwaliteit gehad. Maar die verlengde
raklewe agv. die I-MCP behandeling is van groter belang as die kwaliteit wat verloor
is. Dit, saam met die feit dat die toepassing van I-MCP behandeling baie makliker is
as BA, maak dit die beter opsie. Voordat I-MCP kommersiël geregistreer is moet
daar egter nog baie geleer word oor die produk sodat dit so effektief as moontlik
gebruik kan word vir die opberging van avokados.
Die beheer van relatiewe humiditeit (RH) word beskou as 'n groot veranderlike in die
opberging van vrugte en groente. RH word egter meestal geïgnoreer in opberging
omdat die beheer en meet daarvan moeilik is. Navorsing het al getoon dat indien die
RH vlakke, gedurende opberging, nabyaan 95% gehou word, kan koueskade verlaag
word deur die water dampdruk tekorte op die vars produkte te verlaag.
Vir die finale eksperiment was 'Fuerte' en 'Hass' avokados opgeberg teen die
kommersiële temperatuur sowel as 'n laer temperatuur. By beide temperature was die
RH gewysig om laag of hoog te wees. Resultate was egter teleurstellend omdat die
hoër RH nie koue skade of ander fisiologiese skade vertraag het nie.
|
2 |
Enhancement of 'Hass' avocado shelf life using ultra-low temperature shipping or 1-MCP treatment and cold chain management.Kok, Richard Dean. January 2011 (has links)
Avocados are becoming an increasingly important crop in South Africa, where the main producing areas include Limpopo, Mpumalanga and KwaZulu-Natal provinces. The South African avocado industry faces considerable challenges including increasing competition exporting avocados, particularly to the European market. The processes involved to export avocados has markedly improved over the past two decades, however there is always room for improvement and it is necessary to remain competitive on a global scale. Issues such as fruit being partially soft on arrival, quality defects and cold chain management breakdown are still present. It is necessary to investigate new aspects of cold storage such as extending the storage period and understanding the physiological aspects involved. To improvement such issues, an investigation was conducted on ultra-low temperature shipping (1°C) as well as the use of 1-MCP; the implementation of deliberate cold chain breaks to achieve a better understanding as to the quality influences involved; an extended storage period of 56 days to assess the quality issues and benefits involved; as well as investigating the physiological aspects involved with all above treatments on 'Hass' avocados. An initial study saw early-, mid- and late-season 'Hass' avocados stored at 1°C or 5.5°C for 28 days. Additional treatments included fruit treated and not treated with 1-MCP as well as waxed and unwaxed fruit. Storage at 1°C was comparable with 1-MCP treatment for both fruit softening in storage and extending the ripening period. Storage at 5.5°C resulted in partial in-transit ripening, if 1-MCP was not used. Early-season fruit incurred the most external chilling injury but overall levels were minimal and not concerning. Mid-season fruit were the most sound in terms of quality. It is suggested that 1°C can be used as a viable economic alternative to 1-MCP for long distance shipping of 'Hass' up to 28 days. The cold chain break trial included a 24 hour delay before cold storage, a deliberate 8 hour break at day 14 of cold storage where fruit were removed from cold storage and a control of 28 days cold storage where no break was involved. Early-, mid- and late-season 'Hass' avocados were stored at 1°C or 5.5°C for 28 days. Additional treatments included fruit treated and not treated with 1-MCP as well as waxed and unwaxed fruit. It was found that cold chain breaks do influence the amount of water loss, fruit softening and days taken to ripen. Storage at 1°C did not entirely negate the effects of cold chain breaks compared with 5.5°C, but did result in fruit which were harder at the end of storage and took longer to ripen. The use of 1-MCP also had advantageous effects with respect to significantly lengthening the ripening period, even when a cold chain break occurred, compared with fruit not treated with 1-MCP. As results of the study differed in some respects to those of previous studies, it is recommended that further work be conducted to determine what fruit or pre-harvest factors affect the fruit physiological changes which take place when cold chain breaks occur. Having the option to make use of an extended storage period would be of benefit to the industry if delays occur and fruit have to be maintained under cold storage. Extended storage of South African avocados, especially at the end of the season would also allow for the option of strategically holding back fruit from the export market in order to extend the supply period. It would not only benefit export options, but would also be highly beneficial to local pre-packers, as it would reduce the need to import fruit from the Northern hemisphere production areas during the South African off-season. Early-, mid- and late-season 'Hass' avocados were stored at 1°C or 5.5°C for 56 days. Additional treatments included fruit treated and not treated with 1-MCP as well as waxed and unwaxed fruit. The combination of 1°C with the use of 1-MCP resulted in a good shelf life as well as maintenance of internal quality and integrity. External chilling injury is of concern for early-season fruit, however, mid- and late-season fruit did not incur extensive damage. It is, therefore, advised that fruit placed in extended storage are marketed through the 'Ready ripe' program to mask any chilling injury on the 'Hass' fruit. Avocados are renown as a "healthy food" due to their nutritional value as well as containing relatively high concentrations of antioxidants. The fruit also contain high amounts of C7 sugars which can act as antioxidants. Additionally, C7 sugars and other antioxidants play important roles in fruit quality. Therefore, it is important to understand how varying storage conditions and treatments affect the levels of these physiological parameters. Treatments of cold chain break/delay included a deliberate 8 hour break at day 14 of cold storage where fruit were removed from cold storage, a 24 hour delay before cold storage and a control of 28 days where no break was involved. A 56 day extended storage period was also used. Early-, mid- and late-season 'Hass' avocados were stored at 1°C or 5.5°C for 28 days. Additional treatments included fruit treated and not treated with 1-MCP as well as waxed and unwaxed fruit. The use of 1-MCP maintained higher levels of antioxidants, ascorbic acid and C7 sugars for both the 28 day and the 56 day storage periods. The 24 hour delay had a
tendency to increase consumption of anti-oxidant and sugar reserves. The use of 1°C resulted in antioxidant and ascorbic acid levels decreasing while maintaining higher sugar levels. Overall, high stress imposed on fruit decreased reserves resulting in poor quality fruit. The use of 1°C and 1-MCP treatments maintained fruit quality. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
3 |
Factors affecting mesocarp discolouration severity in 'Pinkerton' avocados (Persea americana MILL.)Van Rooyen, Zelda. January 2005 (has links)
The susceptibility of the 'Pinkerton' avocado cultivar to mesocarp discolouration, after
storage, has seriously threatened its export from South Africa. This disorder has proven to be
complex, requiring a better understanding of the fruit's physiology. The purposes of this
study were to identify the role of pre- and postharvest factors, or their interactions, in the
development of the problem. This was done by obtaining fruit from several production areas
of varying mesocarp discolouration histories (referred to as "high", "medium" or "Iow risk"
areas) during the 2000 and 2001 seasons. Fruit were stored at 8, 5.5 and 2°C for 30 days, as
well as ambient (20°C). Evaluations of fruit quality were made before and after storage, as
well as after softening. Once removed from storage the weight loss (during storage) was
determined, and fruit firmness and carbon dioxide (C02) production rates monitored daily. It
was found that temperatures below the recommended shipping temperature of 5.5°C, i.e.
2°C, produced the best internal fruit quality. This was supported by the membrane integrity
studies that showed less membrane stability at the warmer storage temperature of 8°C.
Furthermore, remained hard during storage and subsequently had an extended shelf life.
Fruit origin was also found to play a major role in browning potential, with discolouration being
consistently more severe in fruit from "high risk" areas and increasing in severity as the
season progressed. The rate of CO2 production was found to follow a similar trend, with rates
increasing as the season progressed, and also being slightly higher in fruit from "high risk"
areas. The higher CO2 production rates were thought to be related to a decrease in
membrane integrity as the season progressed. While storage temperature was not found to
have a significant effect on the rate of CO2 production after storage, it did affect the time taken
to reach the maximum rate, with fruit stored at 2°C taking longer.
Biochemical analyses to determine the concentration of total phenolics and the activity of the
enzyme polyphenol oxidase (PPO) also showed that the potential for browning was initiated
by preharvest conditions. While no significant differences were found between growers with
regards to total phenol concentrations, the PPO activity was found to be higher in fruit from
poor quality areas, and subsequently browning potential was expected to be higher in these
fruit. It was, however, found that the potential for browning could be reduced by storing fruit
at 2°C, as this decreased the total phenolics concentration. This evidence further emphasized
the idea that storage at 2°C could be highly advantageous.
Fruit mineral analysis showed that certain key elements played a significant role in the
severity of mesocarp discolouration, with excessive fruit nitrogen and decreasing copper and
manganese concentrations appearing to play major roles. The high fruit nitrogen
concentrations were suspected to reflect fruit grown on very vigorous trees, resulting in
shoots competing with fruit for available reserves. It is suggested that 'Pinkerton' of a quality
acceptable to the market, can be produced by manipulating source:sink relationships,
particularly through decreasing the availability of nitrogen, followed by low temperature (24°
C) shipping. Future work should concentrate on manipulation of source:sink relationships,
to take account of both climatic conditions and leaf to fruit ratios.
The evaluation of chlorophyll fluorescence as a tool for predicting mesocarp discolouration
potential in 'Pinkerton' proved to be unsuccessful in this study and future studies may require
modifications to the current technique. It is suspected that differences in chlorophyll content,
for example, between fruit from different origins, will have to be taken into account when
interpreting results.
The success of using 2°C storage to improve the internal quality on 'Pinkerton' fruit prompted
further studies, during 2004, to ensure that the development of external chilling injury would
not decrease the marketability of the cultivar. Low temperature conditioning treatments, prior
to storage, proved to be highly successful in reducing the development of external chilling
injury, thus further improving fruit quality as a whole. Preconditioning treatments consisted of
fruit that were kept at either 10°C, 15°C or 20°C for 1 or 2 days before being placed into
storage for 30 days at 2°C or 5.5°C. All preconditioning treatments were compared to fruit that
were placed directly into storage. The effect of fruit packaging on moisture loss (as
determined by weight loss) and chilling injury was also investigated using unwaxed fruit,
commercially waxed and unwaxed fruit individually sealed in micro-perforated polypropylene
bags with an anti-mist coating on the inside (polybags). Holding 'Pinkerton' fruit, regardless of
packaging treatment, at 10°C for 2 days prior to storage at 2°C or 5.5°C significantly
decreased the severity of external chilling injury. The use of polybags during preconditioning
and storage showed potential in further reducing the development of external chilling injury,
although the higher incidence of fungal infections in these fruit needs to be addressed. The
determination of proline concentrations in fruit exocarp tissue after storage was helpful in
determining the level of stress experienced by fruit that were subjected to different packaging
and preconditioning treatments. In this study waxed fruit subjected to 1 d preconditioning at
10°C, 15°C or 20°C or placed directly into storage at 2°C showed very high proline
concentrations and also displayed more severe external chilling injury, despite unwaxed fruit
losing more weight during these treatments. The role of moisture loss thus needs further
investigation. The thickness and method of wax application was thought to play an important
role in the higher external chilling injury ratings in this study as waxed fruit often developed
chilling injury symptoms around the lenticels and it was suspected that either the lenticels
were damaged by the brushes used to apply the wax or that the lenticels became clogged
thus resulting in reduced gaseous exchange. Nevertheless, the success of low temperature
conditioning in reducing external chilling injury, while maintaining sound internal quality, may
enable storage temperatures to be dropped even further, thus enabling South Africa to export
avocados to countries that require a cold disinfestation period prior to entry to eliminate
quarantine pests (e.g. fruit fly). / Thesis (Ph.D.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
|
4 |
Management of avocado postharvest physiology.Blakey, Robert John. January 2011 (has links)
Avocados are an important horticultural crop in South Africa, especially in the provinces of
KwaZulu-Natal, Mpumalanga and Limpopo. The distance to traditional export markets,
phytosanitary restrictions to lucrative markets such as China, the USA and Japan and
increased competition in the European market have challenged the South African avocado
industry. The industry has responded with improved logistics and shipping, a co-ordinated
market access program and a global system to co-ordinate exports of avocados to the
European market. To remain competitive on the global market, further improvements and
innovations are required to improve the efficiency of postharvest operations. These
improvements and innovations should be guided by a greater understanding of postharvest
physiology. Avocados are a relatively new export crop, so there is still much to be learnt about
avocado postharvest physiology and the optimisation of postharvest management. In this
regard, reduced temperature storage (1°C) and modified humidity packaging (MHP) were
investigated for their effect on fruit physiology and quality, the effect of a water- and ABA-infusion
on ripening was examined and the effect of a cold chain break on fruit physiology and
quality determined; near-infrared spectroscopy was also examined for its potential for its use
in the avocado industry.
As an initial study, the relationships between individual sugars, protein and oil were
studied to understand the changes in avocado fruit during ripening. It was found that
mannoheptulose and perseitol were the predominant sugars at harvest, but declined to very
low levels during the first 10 days postharvest. The concentrations of glucose and fructose
increased, while sucrose declined slightly during ripening. The concentration of protein
increased sigmoidally during ripening, reflecting the increase in the ripening enzymes,
particularly cellulase and polygalacturonase. The oil content fluctuated slightly during
ripening. It is suggested that mannoheptulose and perseitol are important carbon and energy
sources during ripening. Glucose concentration was also found to increase earlier in fast
ripening fruit compared to slow ripening fruit, which is related to increased cellulase activity
and may be related to the ABA functioning.
Thereafter, storage and ripening trials in two consecutive seasons showed that 1°C
storage and the use of MHP for 28 days reduced mass loss, water loss, ethylene production,
respiration, softening and heptose consumption, without appreciably affecting fungal rots,
physiological disorders or external chilling injury, compared to fruit stored at 5.5°C and
regular atmosphere respectively. Also, the storage of fruit in MHP delayed the rise in the
activity of cellulase during ripening, compared to fruit not stored in MHP, but there was no
significant difference in the peak activity of cellulase, polygalacturonase or pectin
methylesterase.
In a separate experiment, fruit ripening was significantly affected by the infusion of ABA
in an aqueous solution. Water slightly reduced the variation in ripening while ABA reduced
the time to ripening and the variation; it is suggested that water stress and ABA are
intrinsically involved in the ripening processes and may act as a ripening trigger. The water
concentration in fruit was measured non-destructively using reflectance NIR; this model was
used to determine the maturity of fruit and the loss of water during cold storage.
In the cold chain break experiment, it was found that although fruit recovered after a
cold chain break, in terms of ethylene production and respiration, there was a loss in quality
because of severe shrivelling as a result of increased water loss. Fruit that were stored at 1°C
were generally of a better quality at ripeness, if the cold chain was broken, compared to fruit
stored at 5.5°C. In a follow-up experiment, it was found that significant changes occurred in
avocado physiology over a 6h period. The respiration rate of fruit significantly increased after
4h at room temperature and mannoheptulose declined by 32% in control fruit and by 16% in
ethephon-treated fruit after 6h. This demonstrates the potential for quality loss in a short
amount of time.
Furthermore, a model of avocado ripening is proposed, outlining the role of water, ABA,
ethylene, respiration, ripening enzymes and individual sugars. This study has contributed to
the understanding of avocado postharvest physiology and should aid in better management of
avocados for improved fruit quality and consumer satisfaction. / Thesis (Ph.D.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
5 |
Effect of postharvest silicon application on 'hass' avocado (Persea americana Mill.) fruit quality.Kaluwa, Kamukota. January 2010 (has links)
The South African avocado industry is export-orientated with forty percent of total
production sold overseas. The avocado fruit is a highly perishable product with a
relatively high rate of respiration which results in the quick deterioration of fruit
quality. Good phytosanitary procedures are a necessity in ensuring good product
quality. Due to the threat of pests and diseases becoming resistant to the
conventional chemicals currently used to control them, there has been a great
need to diversify from their usage.
Silicon (Si), being the second most abundant element (28%) in the earth’s crust
after oxygen, is a major constituent of many soils and has been associated with
disease resistance in plants for a long time. It has been used in a number of crop
species to provide resistance against pathogenic agents. In some horticultural
crops Si has been found to offer protection against fungal infections by
strengthening cell walls, thus making it more difficult for the fungi to penetrate and
colonize the plant. The aim of this research was to investigate the effects of postharvest
silicon application on the quality of ‘Hass’ avocado fruit. The specific
objectives included investigating the effect of silicon on the ripening pattern as well
as the metabolic physiology of the avocado fruit.
Avocado fruit were obtained from two locations in the KZN Midlands (Everdon
Estate in Howick and Cooling Estate in Wartburg). Fruit were treated with different
forms of Si (potassium silicate (KSil), calcium silicate (CaSil), sodium silicate
(NaSil) and Nontox-silica® (NTS)) at concentrations ranging from 160 ppm to 2940
ppm. After dipping for 30 minutes in the silicon treatments, the fruit were stored at
-0.5°C, 1°C, 5°C or at room temperature (25°C). Energy dispersive x-ray (EDAX)
analysis was then conducted on the exocarp and mesocarp tissues to determine
the extent of silicon infiltration within each treatment. Firmness measurements,
ethylene evolution and CO2 production were recorded as fruit approached
ripening. The CO2 production of fruit that were stored at room temperature was
analysed daily until they had fully ripened, while fruit from cold storage were
removed weekly to measure respiration. Mesocarp tissue from each fruit was
extracted using a cork borer and subsequently freeze-dried and stored for
physiological analysis. The freeze-dried mesocarp tissue was then finely ground
and later analysed for sugar content, total anti-oxidant capacity (TAOC), total
phenolic (TP) content and phenylalanine ammonia lyase (PAL) activity using their
respective assays. Statistical analyses were carried out using GenStat® version
11 ANOVA. Treatment and storage temperature means were separated using
least significant differences (LSD) at 5% (P = 0.05). The experimental design in
this study was a split-plot design with the main effect being storage temperature
and the sub-effect being treatments. Each replication was represented by a single
fruit.
EDAX analysis revealed that Si passed through the exocarp into the mesocarp
tissue in fruit treated with high concentrations of silicon, i.e., KSil 2940 ppm.
Significant differences (P < 0.001) were observed in temperature means with
regards to firmness. Fruit treated with KSil and NTS only and stored at 5°C were
firmer than fruit stored at other temperatures. Fruits treated with Si in the form of
KSil 2940 produced the least amount of CO2, while non-treated fruits (Air) had the
highest respiration rate. Fruit stored at room temperature (25°C) produced
significantly higher amounts of CO2 and peaked much earlier than fruit stored at
other temperatures. Ethylene results showed that there were differences (P <
0.05) between temperature means with the highest net ethylene being produced
by fruit stored at 25°C. There were also significant differences amongst treatment
means (P < 0.001), with fruits treated with KSil 2940 ppm producing the least
ethylene.
There were significant differences (P < 0.001) in temperature means with regards
to the total phenolic concentration with fruits stored at 1°C having the highest TP
concentration (26.4 mg L-1 gallic acid). Fruit treated with KSil 2940 ppm had the
highest total phenolic concentration whilst the control fruit (Air and Water) had the
lowest. There were also differences (P < 0.05) in storage temperature means with
respect to the total antioxidant capacity. Fruit stored at -0.5°C had the highest
TAOC (52.53 μmol FeSO4.7H2O g-1 DW). There were no significant differences in
TAOC (P > 0.05) with regards to treatment means although fruit treated with KSil
2940 ppm and stored at -0.5°C showed the highest TAOC of 57.58 μmol
FeSO4.7H2O g-1 DW. With regards to the concentration of major sugars in
avocado, mannoheptulose and perseitol (mg g-1), no significant differences (P >
0.05) were observed in temperature means. However, fruit stored at -0.5°C had
the highest concentration of these C7 sugars compared with fruit stored at other
temperatures. There were significant differences in treatment means (P < 0.001)
showing that fruit treated with KSil 2940 ppm had the highest concentration of both
mannoheptulose (18.92 mg g-1) and perseitol (15.93 mg g-1) in the mesocarp
tissue.
Biochemical analyses showed differences (P < 0.05) in storage temperature
means with respect to PAL enzymatic activity. Fruit stored at 5°C had the highest
PAL activity (18.61 mmol cinnamic acid g-1 DW h-1) in the mesocarp tissue
compared with fruit stored at other temperatures. There were significant
differences in treatment means (P < 0.001) with regard to PAL activity. Fruit
treated with KSil 2940 ppm had the highest PAL activity (23.34 mmol cinnamic
acid g-1 DW h-1).
This research has demonstrated the beneficial effects, particularly applications of
2940 ppm Si in the form of KSil. This treatment successfully suppressed the
respiration rate of avocado fruit. Biochemical analyses of total antioxidants, total
phenolics and PAL activity in the mesocarp tissue have shown the usefulness of Si
in improving the fruit’s metabolic processes. The C7 sugars (D-mannoheptulose
and perseitol) also seem to be more prevalent in avocado fruit treated with Si
(particularly KSil 2940 ppm) than in non-treated fruit. This suggests that an
application of Si to avocado fruit can aid in the retention of vital antioxidants (C7
sugars). / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
6 |
Ultra-low temperature shipping and cold chain management of 'fuerte' avocados (Persea americana Mill.) grown in the KwaZulu-Natal Midlands.Lutge, Andre. 15 November 2013 (has links)
‘Fuerte’ makes up 25% of the avocados exported from South Africa to European markets and requires shipping periods of up to 28 days and a correctly managed cold chain. A temperature of 5.5°C and expensive CA and 1-MCP treatments are currently used to delay ripening over this lengthy cold chain; however, fruit still appear on the European market showing signs of softening and physiological disorders. Increased competition on the global market and the disadvantage of a particularly long distance to the European market has challenged the South
African export industry. These challenges have necessitated improved road and sea transport logistics, co-ordination with producing countries which supply fruit to European markets over similar periods as South Africa, and research into ultra-low temperature storage to possibly
enable future access to new lucrative markets in the USA, China and Japan. It is also known that there are various ‘weak links’ in this cold chain and that cold chain breaks are
detrimental to fruit quality, but further research into the negative effects of these cold chain breaks at ultra-low temperatures was needed. Thus, the objective of the study was to determine the potential for shipping ‘Fuerte’ avocados at temperatures of 2°C as well as determining the effects of cold chain breaks on fruit quality, throughout the growing season and possibly for an extended period of 56 days. ‘Fuerte’ avocados were harvested at three
different maturity stages reflecting early-, mid- and late-season fruit, with moisture contents of 74%, 68% and 63%, respectively. Fruit were stored at 2°C or 5.5°C, treated with 1-MCP and waxed. Additionally cold chain breaks (24 hour delay and break at 14 days) were
implemented. Fruit softening, mass loss, days-to-ripening, external and internal quality as well as antioxidant levels and total sugar levels were determined. The first aim was to determine whether a lower than currently used storage temperature could be a successful alternative to 1-MCP use. A storage temperature of 2°C provided good
internal quality as well as reduced mass loss and fruit softening, which is related to the slightly reduced use of C7 sugars at 2°C compared with 5.5°C. Although the overall
occurrence of external chilling injury was relatively low, 2°C storage caused a notably higher occurrence of external chilling injury than 5.5°C storage, particularly early in the season, but extended the days-to-ripening. Unfortunately, no correlation between the anti-oxidants in the exocarp and external damage was found. Waxing significantly reduced the external damage on fruit stored at 2°C, so much so, that the treatment combinations of ‘2°C, no 1-MCP, waxed’ showed no external chilling injury throughout the season. Further, waxing fruit at 2°C could eliminate the need for 1-MCP, delivering a product of the required shelf-life and quality. Best results were achieved for mid-season fruit stored at 2°C. Late-season fruit would
potentially be the most profitable to store at this low temperature, however, body rots (anthracnose and stem-end rot) were more common in the late-season. Storage at 2°C can therefore maintain the internal quality over a storage period of 28 days and be a potential
alternative to 1-MCP use as the season progresses. The effect of cold chain breaks on fruit quality was then investigated and showed that both a delay and a break in the cold chain increased mass loss and fruit softening, reduced days-to-ripening and increased external chilling injury, especially early in the season. Water loss was
the main contributor to the decreased fruit quality which resulted from the delay in cooling, increasing external damage significantly, particularly early in the season. The break at 14 days had a marked effect on physiological activity of fruit during storage, seen mainly in the increased metabolic activity, resulting in increased fruit softening and water loss during storage and a decrease in C7 sugars and thus shelf-life, particularly for fruit stored at 5.5°C.
Importantly, 1-MCP use and storage at 2°C reduced the effects of cold chain breaks with respect to fruit softening, however, lowering the storage temperature had a greater negating effect than 1-MCP and could be a successful alternative to the use of 1-MCP. The internal quality throughout the experiment was very good, with few internal disorders and no significant treatment effects on internal quality and C7 sugar concentrations. Overall, a break in the cold chain, before and during cold storage, resulted in a marked reduction in fruit quality. The storage temperature of 5.5°C should not be used for a 56 day storage period as it resulted in significant fruit softening during storage, even when 1-MCP was used, and resulted in significantly more external chilling injury in the mid- and late-season than at 2°C. Storage of 1-MCP treated, waxed fruit at 2°C, resulted in the best shelf-life and fruit quality, particularly mid-season fruit which had negligible external chilling injury and 100% sound fruit. Early-season fruit suffered significant external chilling injury at 2°C and late-season fruit had the highest body-rots and internal disorders at this storage temperature. Although mid-season
fruit could be successfully stored at 2°C for 56 days, the use of a 56 day storage period is not recommended as a practical storage period, due to the high risk of external damage, particularly if maturity levels are not optimum and trees and fruit are not of the highest quality. Overall this thesis has shown that 1-MCP treatment can play an important role early in the season when fruit are susceptible to external damage, however, storage at 2°C results in good quality fruit and, when used in conjunction with waxing, appears to be a viable alternative to the use of 1-MCP, particularly later in the season. Further, the negative effects of cold chain breaks on fruit quality have been demonstrated and, importantly, the storage temperature of 2°C negates the fruit softening effects of these breaks, even if 1-MCP is not used. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
Page generated in 0.0697 seconds