• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 48
  • 17
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Studies on the Regulation of the Assimilatory Nitrate Reductase Operon in Azotobacter vinelandii

Wang, Baomin January 2009 (has links)
Azotobacter vinelandii is a free-living diazotroph. This bacterium fixes atmospheric nitrogen in different environments using three genetically distinct nitrogenases. A. vinelandii is also capable of utilizing nitrate and nitrite from the environment. Nitrate is reduced sequentially into nitrite and ammonia. The assimilatory nitrate reductase and nitrite reductase are encoded by the nasAB operon. Previous genetic studies identified a number of factors that influence nasAB expression. However, the molecular mechanisms controlling the expression of nasAB are unclear.The current study was initiated to characterize the region preceding the nasAB operon which was previously implicated in its regulation and to further study the molecular mechanisms of nasAB regulation. The results confirm that nasAB is subject to multiple layers of regulation. The operon is under the control of an NtrC-dependent promoter; nitrate/nitrite induction occurs at the post-transcriptional level via antitermination within the nasAB leader region; and nitrate/nitrite induction is mediated by NasS/NasT, a sensor-antiterminator two-component regulatory system.Together, these data suggest a model for the regulation of the assimilatory nitrate reductase operon in A. vinelandii.
62

Production of gibberellin-like substances by Azotobacter.

Breckenridge, Chandra. January 1968 (has links)
No description available.
63

Site-directed mutagenesis of hydrogenase genes in Azotobacter chroococcum

Tito, Donald January 1992 (has links)
Accessory hydrogen uptake genes have been identified in a region of the Azotobacter chroococcum genome about 5 kb downstream of the hydrogenase structural genes (hupSL). DNA sequencing has revealed six genes (hupABYCDE) in this region. These genes are probably transcribed in the same direction as hupSL but are probably in a different operon. Mutational analysis had shown that disruption of the hupB, hupY, hupD and hupE genes gives a Hup$ sp-$ phenotype. In the present work additional mutational analysis, using Tn5, a Tn5 -derivative containing a promoterless lacZ gene, and a kanamycin resistance gene, confirms the direction of transcription and the separate nature of the hupABYCDE operon, and extends the region known to be necessary for Hup activity to hupA and possibly to 1.6 kb upstream of hupA.
64

Inkorporace mikrobiálních buněk do hydrogelových nosičů / Incorporation of microbial cells in hydrogel carriers

Orišková, Sofia January 2020 (has links)
The presented diploma thesis focuses on the use of plant growth promoting bacteria as an ecological alternative to conventional fertilizers. The incorporation of bacterial cells into hydrogel carriers is already a well-studied topic, but due to its disadvantages it has not yet found wider application in agriculture. This work offers a novel concept of encapsulating bacteria by gelation directly from the culture. This is achieved by crosslinking the bacterial alginate produced by the model microorganism Azotobacter vinelandii. Since this process was not described before, first its optimization was needed. Alginate production was determined gravimetrically, and its parameters were further characterized using available analytical methods – infrared spectroscopy to monitor structural parameters (monomer composition and the extent of acetylation), dynamic light scattering to characterize the size distribution and AF4-MALS-dRI to obtain the molecular weight. Bacterial PHB production was also investigated using gas chromatography and infrared spectroscopy. The second part of the work is focused on the optimization of the gelling process using bacterial alginate from the culture and CaCl2 as a crosslinking agent. Rheological experiments were used as a tool in understanding the viscoelastic properties of the prepared gels. Gelation was demonstrated within the first day after inoculation. Maximum production of alginate (1,9 ± 0,3) g/l was reached on the fourth day after inoculation. It was found that the addition of 5 g/l of calcium carbonate promotes the production of alginate. Nevertheless, further addition of CaCO3 (30 g/l) showed adverse effects on the molecular weight and is therefore not recommended. Production of PHB was confirmed by both FTIR and GC measurements, with a maximum yield of (23 ± 3) % CDW. Rheological testing confirmed that the product of the crosslinking was a gel. It was found that the crosslinker concentration plays an important role at time 0 min of the gelation, forming a denser network in the structure and causing higher rigidity. Using the highest studied concentration of CaCl2, the critical strain reached values of (5,0 ± 0,7) %. Finally, the incorporation of bacterial cells into the hydrogel was confirmed using fluorescence microscope.
65

Studium produkce polyhydroxybutyrátu u bakterií / Study of polyhydroxybutyrate production in bacteria

Melušová, Soňa January 2009 (has links)
Presented work is focused on study of polyhydroxybutyrate production in bacteria. In theoretical part short characterization of PHB was given and the most common representative of wide group of polyhydroxyalkanoates (PHA) were described. Then, production of PHB and copolymer P(HB-co-HV) in selected bacterial strains was experimentally proven. First, PHB production in Bacillus megaterium using synthetic medium was studied. The PHB content in cells was increased during cultivation under limiting conditions, despite low growth. Addition of ethanol into production media resulted in increased PHB synthesis as well as biomass production (21 % PHB of 1,8 g/l biomass). Further, BM medium containing 8 g/l glucose was tested. PHB production was more than 1 g/l at significant growth increase when compared with synthetic medium. The bacteria B.megaterium showed, except glucose, ability to utilize maltose and xylose. Another cultivations were tested with bacterial strain Azotobacter vinelandii, which is capable of copolymer P(HB-co-HV) synthesis. Maximal growth and copolymer content was reached on Burk's medium with 30 g/l of glucose. Addition of peroxide to growth medium influenced P(HB-co-HV) synthesis to 46 % of 2,6 g/l biomass. Bacteria A.vinelandii showed the best growth on maltose, even compared with glucose (54 % copolymer of biomass content). Finally, PHB production on industrial waste product – whey was monitored. Using Plackett-Burman design for statistical media optimization, the whey content was modified. B.megaterium grown on adjusted whey reached 0,5 g/l PHB, 32 % of cell's content.
66

The influence of green manures upon the growth and physiological efficiency of Azotobacter chroococcum.

Zoond, Alexander. January 1925 (has links)
No description available.
67

Protein Profiles of Azotobacter Vinelandii During the Encystment Process

Butler, Mark A. 08 1900 (has links)
Azotobacter vinelandii 12837 was grown in Burk's glucose media and transferred onto Burk's n-butanol agar plates to allow for the formation of cysts. The patterns of the vegetative cell proteins were compared for each successive day of cyst formation, using the polyacrylamide gel isoelectric focusing technique. The findings revealed that, as the cysts developed to maturity, definite changes occurred in the protein constitution, indicative of the biochemical and physiological changes which cells undergo during cyst development. Also, as a control to show that the changes in protein patterns during encystment were not due to physiological condition, Azotobacter vinelandii strain OP was grown in three different media, and proteins from the cells were compared using PAGIF.
68

Production of gibberellin-like substances by Azotobacter.

Breckenridge, Chandra. January 1968 (has links)
No description available.
69

Site-directed mutagenesis of hydrogenase genes in Azotobacter chroococcum

Tito, Donald January 1992 (has links)
No description available.
70

Assembly of Iron-Sulfur Clusters In Vivo

O'Carroll, Ina Puleri 01 April 2009 (has links)
Iron-sulfur [Fe-S] clusters are protein cofactors that facilitate various life-sustaining biological processes. Their in vivo assembly is accomplished by three different systems known to date. These are: the NIF system which provides [Fe-S] clusters for nitrogenase and other nitrogen-fixing proteins, the SUF system which is induced during conditions of oxidative stress and iron starvation in E. coli, and the ISC system which serves as the housekeeping assembly apparatus. The latter is the focus of this dissertation and includes the proteins IscR, IscS, IscU, IscA, HscB, HscA, Fdx, and IscX. IscU is purified in its cluster-less (apo) form, but can serve as a scaffold to assemble [Fe-S] clusters in vitro in the presence of excess iron and sulfide. To test the scaffold hypothesis and gain insight into the events that occur during [Fe-S] cluster assembly and delivery, we developed two methods that allow the isolation of IscU and other ISC proteins in vivo. In the first method, Azotobacter vinelandii IscU is isolated from its native host, whereas in the second, it is isolated recombinantly from E. coli using a vector that allows expression of the entire isc operon. We found that IscU exists in vivo in two forms: apo-IscU and [2Fe-2S]2+ cluster-loaded IscU which are believed to be conformationally distinct. Both transient and stable IscU-IscS complexes were identified, indicating that the two proteins interact in vivo in a manner that involves their association and dissociation. The [2Fe-2S]2+-IscU species was present as a single entity, whereas significant amounts of apo-IscU were found associated with IscS, suggesting that IscU-IscS dissociation is triggered by the completion of [2Fe-2S] clusters. Both apo and [2Fe-2S]2+-IscU were predominantly monomeric whereas IscU-IscS complexes were determined to have an α2β2 composition. IscU was purified in the absence of the chaperones HscA and HscB and was also shown to accommodate a [2Fe-2S]2+ cluster similar to the one bound to IscU isolated from wild type cells. The findings suggest that [2Fe-2S]2+-IscU exists in one conformation in vivo and that any conformational changes on IscU are exerted after [2Fe-2S] cluster formation. In silico studies showed that a flexible loop containing the conserved LPPVK motif, which is responsible for interactions with HscA, may facilitate cluster exposure to either mediate its delivery to acceptor proteins or participation in the construction of [4Fe-4S] clusters. Experiments with NfuA, a protein similar to the C-terminal domain of NifU, demonstrated that NfuA and similar proteins might serve as [Fe-S] cluster carriers to accomplish the efficient delivery of nascent cofactors to the various recipient proteins. / Ph. D.

Page generated in 0.1672 seconds