• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La CAO et l'optimisation de systèmes, une approche par couplages dynamiques de composants

Delinchant, Benoît 08 December 2011 (has links) (PDF)
C'est au travers d'un panel d'applications de conception en génie électrique, issu de mes travaux de recherche et d'encadrements doctoraux, qu'est illustrée une problématique inhérente à la " conception système ", celle des couplages. Ceux-ci interviennent au niveau de la définition des modèles du système (multi-physiques, multi-formalismes, multi-niveaux...) mais aussi au niveau des analyses possibles sur ce système (simulation dynamique, analyse de sensibilité, optimisation sous contraintes, robustesse, ...). Cette nature complexe est associée à la nature dynamique de la conception système, dans le sens où les couplages naissent en cours de processus. Ces deux caractères font que la réalisation d'outils de CAO adaptés est un véritable challenge que je cherche à relever en répondant à un ensemble d'enjeux décrits dans ce rapport. Pour ce faire, nous disposons, dans mon équipe de recherche, du framework logiciel CADES. Il constitue à la fois notre plateforme expérimentale et le réceptacle de méthodologies que nous valorisons pédagogiquement et industriellement. Mes contributions à ce framework, sont principalement méthodologiques mais également applicatives dans le domaine des MEMS magnétiques et du bâtiment intelligent. Elles sont majoritairement axées vers l'optimisation sous contraintes, en particulier par des formalismes de modélisation dédiés et des méthodes de génération automatique de calcul de Jacobien. En outre, c'est par l'approche à composants logiciels, mise en oeuvre dans CADES, que sont plus spécifiquement pris en compte les couplages dynamiques en question. Les perspectives ouvertes par ces travaux vont de la conception robuste et fiable de systèmes, à la commande optimale en temps réel, en s'appuyant sur des méthodologies de modélisation, de capitalisation et de réutilisation collaborative des connaissances, en exploitant au mieux Internet et les technologies logicielles.
2

Génération automatique de problèmes d'optimisation pour la conception et la gestion des réseaux électriques de bâtiments intelligents multi-sources multi-charges

Warkozek, Ghaith 07 September 2011 (has links) (PDF)
Le bâtiment devient de plus en plus un système complexe où les flux énergétiques doivent être gérés en fonction des usages : on parle de bâtiments intelligents. Il s'ensuit une complexité croissante pour les concepteurs, qui doivent s'intéresser autant au bâtiment lui-même (plusieurs sources électriques et multiplication des charges) qu'à ses équipements, sa gestion énergétique mais aussi aux interactions avec l'environnement extérieur (flux d'informations exogènes sur le marché d'énergie, prix d'achat et de revente, subventions à l'auto-consommation, etc...). Il est désormais nécessaire de coupler la phase de conception avec celle de gestion énergétique du bâtiment. Les travaux de cette thèse visent à proposer une démarche méthodologique permettant de formuler automatiquement les problèmes d'optimisation exploitables autant en conception qu'en exploitation du système bâtiment. La démarche est basée sur les concepts issus de l'ingénierie dirigée par les modèles (IDM).
3

Modéliser le concept de confort dans un habitat intelligent : du multisensoriel au comportement

Gallissot, Mathieu 26 April 2012 (has links) (PDF)
La notion de confort dans les habitats est une problématique majeure pour résoudre des problèmes écologiques (consommation et émissions des bâtiments), économiques (réduction de coûts d'exploitation) et sociaux (maintien et assistance à domicile) qui définissent le développement durable. Cependant, cette notion de confort est complexe, par le nombre de paramètres qu'elle intègre, paramètres à la fois humains (perception) et physiques (mesure). Notre étude vise à modéliser cette notion de confort dans un contexte d'habitat intelligent. L'habitat intelligent émerge depuis le début des années 2000, et se positionne en héritier de la domotique, bénéficiant des progrès technologiques illustrés par l'informatique ubiquitaire et l'intelligence artificielle, concepts formants l'intelligence ambiante. La première partie de notre étude consiste à définir l'habitat intelligent, en formalisant les acquis (domotique) et les problématiques de recherche, sous l'angle de la représentation de connaissances par les modèles. Notre approche du bâtiment intelligent nous à permis de définir un cadre d'interopérabilité : un intergiciel capable de concentrer les paramètres et commandes d'un environnement. Cette interopérabilité est nécessaire de par l'hétérogénéité des objets communicants qui composent un habitat : hétérogénéité des applications, des protocoles de communication, de savoir-faire et d'usages. Les travaux réalisés dans cette première partie de l'étude nous ont permis d'instrumenter une plate-forme d'expérimentation : la plateforme Domus. Ainsi, en reconstituant un appartement, et en le dotant d'objets communicants, nous avons pu mettre en œuvre, par le biais de l'interopérabilité, un environnement intelligent, environnement qui se caractérise par une forte densité d'information et une capacité de réaction. La réalisation de cette plate-forme est nécessaire pour aborder des thématiques diverses liées à l'habitat, comme le confort. En effet, l'intelligence ambiante apporte une nouvelle dimension dans ce cadre de recherche : l'ubiquité. La densité croissante de capteurs nous permet de collecter plus d'informations, non seulement sur l'environnement mais également sur l'utilisateur et son comportement, définissant ainsi une nouvelle approche du confort : le confort adaptatif. Les travaux sur l'étude du confort dans les bâtiments se focalisent sur le confort thermique. Dans nos travaux, nous avons voulu nous intéresser au confort multi-sensoriel. Celui-ci permet d'une part de prendre en compte l'ensemble des paramètres qui agrémentent un environnement (l'air, le son, la vue) mais permet également de nous intéresser aux effets sensoriels croisés que peuvent induire ces modalités sur l'occupant. Par exemple, on soupçonne la température d'éclairage (éclairage rouge/chaud, éclairage bleu/froid) d'avoir une incidence sur la perception thermique. Des expérimentations ont en effet démontré l'approche pratique et l'approche théorique de ces effets multi-sensoriels. La mise en place de notre cadre d'interopérabilité, en première partie, dans la plateforme Domus et les résultats de nos évaluations expérimentales, en seconde partie, sur le confort réalisés dans cette même plateforme, nous permettent de participer à la définition d'un " confort-mètre ", qui s'appuie à la fois sur les capteurs, les objets de l'habitat et la perception des habitants.
4

Modéliser le concept de confort dans un habitat intelligent : du multisensoriel au comportement / Modelling the concept of comfort within a smart building : from senses to behaviour

Gallissot, Mathieu 26 April 2012 (has links)
La notion de confort dans les habitats est une problématique majeure pour résoudre des problèmes écologiques (consommation et émissions des bâtiments), économiques (réduction de coûts d'exploitation) et sociaux (maintien et assistance à domicile) qui définissent le développement durable. Cependant, cette notion de confort est complexe, par le nombre de paramètres qu'elle intègre, paramètres à la fois humains (perception) et physiques (mesure). Notre étude vise à modéliser cette notion de confort dans un contexte d'habitat intelligent. L'habitat intelligent émerge depuis le début des années 2000, et se positionne en héritier de la domotique, bénéficiant des progrès technologiques illustrés par l'informatique ubiquitaire et l'intelligence artificielle, concepts formants l'intelligence ambiante. La première partie de notre étude consiste à définir l'habitat intelligent, en formalisant les acquis (domotique) et les problématiques de recherche, sous l'angle de la représentation de connaissances par les modèles. Notre approche du bâtiment intelligent nous à permis de définir un cadre d'interopérabilité : un intergiciel capable de concentrer les paramètres et commandes d'un environnement. Cette interopérabilité est nécessaire de par l'hétérogénéité des objets communicants qui composent un habitat : hétérogénéité des applications, des protocoles de communication, de savoir-faire et d'usages. Les travaux réalisés dans cette première partie de l'étude nous ont permis d'instrumenter une plate-forme d'expérimentation : la plateforme Domus. Ainsi, en reconstituant un appartement, et en le dotant d'objets communicants, nous avons pu mettre en œuvre, par le biais de l'interopérabilité, un environnement intelligent, environnement qui se caractérise par une forte densité d'information et une capacité de réaction. La réalisation de cette plate-forme est nécessaire pour aborder des thématiques diverses liées à l'habitat, comme le confort. En effet, l'intelligence ambiante apporte une nouvelle dimension dans ce cadre de recherche : l'ubiquité. La densité croissante de capteurs nous permet de collecter plus d'informations, non seulement sur l'environnement mais également sur l'utilisateur et son comportement, définissant ainsi une nouvelle approche du confort : le confort adaptatif. Les travaux sur l'étude du confort dans les bâtiments se focalisent sur le confort thermique. Dans nos travaux, nous avons voulu nous intéresser au confort multi-sensoriel. Celui-ci permet d'une part de prendre en compte l'ensemble des paramètres qui agrémentent un environnement (l'air, le son, la vue) mais permet également de nous intéresser aux effets sensoriels croisés que peuvent induire ces modalités sur l'occupant. Par exemple, on soupçonne la température d'éclairage (éclairage rouge/chaud, éclairage bleu/froid) d'avoir une incidence sur la perception thermique. Des expérimentations ont en effet démontré l'approche pratique et l'approche théorique de ces effets multi-sensoriels. La mise en place de notre cadre d'interopérabilité, en première partie, dans la plateforme Domus et les résultats de nos évaluations expérimentales, en seconde partie, sur le confort réalisés dans cette même plateforme, nous permettent de participer à la définition d'un « confort-mètre », qui s'appuie à la fois sur les capteurs, les objets de l'habitat et la perception des habitants. / The notion of comfort in homes is a major problem to solve environmental problems (consumption and emissions of buildings), economic (reduction of operating costs) and social (maintenance and home care) that define sustainable development. However, this notion of comfort is complicated by the number of parameters that integrates both human (perception) and physical (measurement) parameters. Our study aims to model the concept of comfort in a smart home. Smart homes emerged in the early 2000s, and are positioned as heir to home automation, benefiting from technological advances illustrated by ubiquitous computing and artificial intelligence, ambient intelligence concepts formants. The first part of this study was to define habitat intelligent, formalizing the gains (home automation) and research issues, in terms of knowledge representation by the models. Our approach to intelligent building allowed us to define a framework for interoperability: a middleware able to focus and control the parameters of an environment. This interoperability is required by the heterogeneity of communicating objects that make up a habitat: heterogeneity of applications, communication protocols, know-how and practices. This first part of the study allowed us to instrument an experimental platform: the platform Domus. Thus, by restoring an apartment, and by providing it with smart objects, we could implement, through interoperability, an intelligent environment, environment characterized by high information density and capacity reaction. The realization of this platform is needed to address various topics related to housing, such as comfort. Indeed, ambient intelligence brings a new dimension in this research framework: ubiquity. The increasing density of sensors allows us to collect more information, not only the environment but also on the user and its behavior, thus defining a new approach to comfort: Adaptive comfort. Most of the work focusing on thermal comfort, we are interested in multi-sensory comfort. This allows one hand to take into account all the parameters that enhances an environment (air, sound, sight) but also allows our attention to cross-sensory effects that can induce these terms on the occupier. For example, it is suspected the temperature light (red light / heat, light blue / cold) to affect the perception of heat. Experiments have shown the practical approach and the theoretical approach of multi-sensory effects. The results of this study will be led to participate in the definition of "comfortmeter", a tool to sense comfort for both habitat and the inhabitant.
5

Génération automatique de problèmes d'optimisation pour la conception et la gestion des réseaux électriques de bâtiments intelligents multi-sources multi-charges / Automatic generation of optimization problems in the design and management of power systems of intelligent buildings multi load multi source

Warkozek, Ghaith 07 September 2011 (has links)
Le bâtiment devient de plus en plus un système complexe où les flux énergétiques doivent être gérés en fonction des usages : on parle de bâtiments intelligents. Il s'ensuit une complexité croissante pour les concepteurs, qui doivent s'intéresser autant au bâtiment lui-même (plusieurs sources électriques et multiplication des charges) qu'à ses équipements, sa gestion énergétique mais aussi aux interactions avec l'environnement extérieur (flux d'informations exogènes sur le marché d'énergie, prix d'achat et de revente, subventions à l'auto-consommation, etc...). Il est désormais nécessaire de coupler la phase de conception avec celle de gestion énergétique du bâtiment. Les travaux de cette thèse visent à proposer une démarche méthodologique permettant de formuler automatiquement les problèmes d'optimisation exploitables autant en conception qu'en exploitation du système bâtiment. La démarche est basée sur les concepts issus de l'ingénierie dirigée par les modèles (IDM). / The building is becoming increasingly a complex system where energy flows must be managed according to consumption: we talk about intelligent buildings. This means increasing complexity for designers who need to focus as much on building itself (several power sources and multiplication of charges) in its equipment, and in its energy management but also to interactions with the external environment (exogenous flow of information on the energy market, the purchase price and resale, subsidies for self-consumption, etc. ...). It is now necessary to tie the design phase with that of building energy management. The work of this thesis aims at proposing a methodological approach to automatically formulate optimization problems at design stage and under operation of building. The approach is based on concepts from the model-driven engineering (MDE).
6

Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings / Invariance et contrôle symbolique de systèmes coopératifs pour la régulation de température dans les bâtiments intelligents

Meyer, Pierre-Jean 24 September 2015 (has links)
Cette thèse fournit de nouvelles stratégies de contrôle pouvant s'attaquer aux phénomènes hétérogènes et non-linéaires qui décrivent la régulation de la température dans les bâtiments afin d'obtenir un compromis entre le confort et l'efficacité énergétique. Nous nous intéressons donc au contrôle robuste de systèmes coopératifs avec perturbations bornées. Nous résolvons d'abord ce problème grâce à la notion d'intervalle invariant contrôlé robuste, décrivant un ensemble dans lequel l'état peut être maintenu quelle que soit la valeur des perturbations. Une seconde approche décrit des méthodes symboliques pour la synthèse d'un contrôleur discret sur une abstraction finie du système, réalisant une spécification de sûreté associée à l'optimisation des performances. Nous présentons d'abord une méthode symbolique centralisée utilisant les dynamiques du système correspondant au modèle physique. Pour résoudre ses limitations en termes de passage à l'échelle, nous considérons une approche compositionnelle où les méthodes symboliques d'abstraction et de synthèse sont appliquées à des descriptions partielles du système, sous des obligations de type assume-guarantee supposant que la sûreté est satisfaite pour tous les états non-contrôlés. Dans la dernière partie, les contrôleurs présentés sont combinés et évalués dans le cadre d'une régulation de température pour un bâtiment expérimental équipé de la solution UnderFloor Air Distribution. / This thesis provides new control strategies that deal with the heterogeneous and nonlinear dynamics describing the temperature regulation in buildings to obtain a tradeoff between comfort and energy efficiency. We thus focus on the robust control of cooperative systems with bounded disturbances. We first solve this problem with the notion of robust controlled invariant interval, which describes a set where the state can be maintained for any value of the disturbances. A second approach provides dedicated symbolic methods to synthesize a discrete controller on a finite abstraction of the system, realizing safety specifications combined with a performance optimization. We first present a centralized symbolic method using the system dynamics provided by the physical model. To address its limitation in terms of scalability, a compositional approach is considered, where the symbolic abstraction and synthesis methods are applied to partial descriptions of the system under the assume-guarantee obligation that the safety specification is realized for all uncontrolled states. In the final part, the proposed controllers are combined and evaluated on the temperature regulation for an experimental building equipped with UnderFloor Air Distribution.
7

Diakoptics basée en acteurs pour la simulation, la surveillance et la comande des réseaux intelligents / Actor's based diakoptics for the simulation, monitoring and control of smart grids

Montenegro Martinez, Davis 19 November 2015 (has links)
La simulation de systèmes d'énergie est un outil important pour la conception, le développement et l'évaluation de nouvelles architectures et des contrôles grille dans le concept de réseau intelligent pour les dernières décennies. Cet outil a évolué pour répondre aux questions proposées par les chercheurs et les ingénieurs dans les applications de l'industrie, et pour offrant des différentes alternatives pour couvrir plusieurs scénarios réalistes.Aujourd'hui, en raison des progrès récents dans le matériel informatique, la Simulation numérique en temps réel (DRTS) est utilisée pour concevoir des systèmes de puissance, afin de soutenir les décisions prises dans les systèmes de gestion de l'énergie automatisés (SME) et de réduire le délai de commercialisation de produits, entre des autres applications.Les simulations de réseaux électriques peuvent être classées dans les catégories suivantes: (1) la simulation analogique (2) hors simulation de ligne (3) de simulation entièrement numérique (4) la simulation rapide (5) Contrôleur Hardware-In-the-Loop (CHIL) et (6) Puissance Hardware-In-the-Loop (PHIL).Les dernière 3 sont axés sur la simulation Real-Time hardware-in-the-Loop (HIL RT-). Ces catégories portent sur les questions liées à Transitoires électromagnétiques (liste EMT), la simulation de phaseurs ou mixte (phaseur et EMT). Comme mentionné ci-dessus, ces progrès sont possibles en raison de l'évolution des architectures informatiques (matériels et logiciels); Cependant, pour le cas particulier de l'analyse des flux de puissance des réseaux de distribution (DS), il y a encore des défis à résoudre.Les architectures informatiques actuelles sont composées de plusieurs noyaux, laissant derrière lui le paradigme de la programmation séquentielle et conduisant les développeurs de systèmes numériques pour examiner des concepts comme le parallélisme, la concurrence et les événements asynchrones. D'autre part, les méthodes pour résoudre le flux de puissance dynamique des systèmes de distribution considérer le système comme un seul bloc; ainsi, ils utilisent une seule base pour l'analyse des flux de puissance, indépendamment de l'existence de plusieurs cœurs disponibles pour améliorer les performances de la simulation.Répartis dans des procédés en phase et de la séquence, ces procédés ont en caractéristiques communes telles que l'examen d'une seule matrice creuse pour décrire les DS et qu'ils peuvent résoudre simultanément une seule fréquence.Ces caractéristiques font dès les méthodes mentionné sont pas appropriées pour le traitement avec multiple noyaux. En conséquence, les architectures informatiques actuelles sont sous-utilisés, et dégrade la performance des simulateurs lors de la manipulation de grandes DS échelle, changer DS topologie et y compris les modèles avancés, entre autres des activités de la vie réelle.Pour relever ces défis Cette thèse propose une approche appelée A-Diakoptics, qui combine la puissance de Diakoptics et le modèle de l'acteur; le but est de faire toute méthode classique d'analyse de flux d'énergie appropriée pour le traitement multithread. En conséquence, la nature et la complexité du système d'alimentation peuvent être modélisées sans affecter le temps de calcul, même si plusieurs parties du système d'alimentation fonctionnent à une fréquence de base différente comme dans le cas de micro-réseaux à courant continu. Par conséquent, l'analyse des flux de charge dynamique de DS peut être effectuée pour couvrir les besoins de simulation différents tels que la simulation hors ligne, simulation rapide, CHIL et PHIL. Cette méthode est une stratégie avancée pour simuler les systèmes de distribution à grande échelle dans des conditions déséquilibrées; couvrant les besoins de base pour la mise en œuvre d'applications de réseaux intelligents. / Simulation of power systems is an important tool for designing, developing and assessment of new grid architectures and controls within the smart grid concept for the last decades. This tool has evolved for answering the questions proposed by academic researchers and engineers in industry applications; providing different alternatives for covering several realistic scenarios. Nowadays, due to the recent advances in computing hardware, Digital Real-Time Simulation (DRTS) is used to design power systems, to support decisions made in automated Energy Management Systems (EMS) and to reduce the Time to Market of products, among other applications.Power system simulations can be classified in the following categories: (1) Analog simulation (2) off line simulation (3) Fully digital simulation (4) Fast simulation (5) Controller Hardware-In-the-Loop (CHIL) simulation and (6) Power Hardware-In-the-Loop (PHIL) simulation. The latest 3 are focused on Real-Time Hardware-In-the-Loop (RT-HIL) simulation. These categories cover issues related to Electromagnetic Transients (EMT), phasor simulation or mixed (phasor and EMT). As mentioned above, these advances are possible due to the evolution of computing architectures (hardware and software); however, for the particular case of power flow analysis of Distribution Systems (DS) there are still challenges to be solved.The current computing architectures are composed by several cores, leaving behind the paradigm of the sequential programing and leading the digital system developers to consider concepts such as parallelism, concurrency and asynchronous events. On the other hand, the methods for solving the dynamic power flow of distribution systems consider the system as a single block; thus they only use a single core for power flow analysis, regardless of the existence of multiple cores available for improving the simulation performance.Divided into phase and sequence frame methods, these methods have in common features such as considering a single sparse matrix for describing the DS and that they can solve a single frequency simultaneously. These features make of the mentioned methods non-suitable for multithread processing. As a consequence, current computer architectures are sub-used, affecting simulator's performance when handling large scale DS, changing DS topology and including advanced models, among others real life activities.To address these challenges this thesis proposes an approach called A-Diakoptics, which combines the power of Diakoptics and the Actor model; the aim is to make any conventional power flow analysis method suitable for multithread processing. As a result, the nature and complexity of the power system can be modeled without affecting the computing time, even if several parts of the power system operate at different base frequency as in the case of DC microgrids. Therefore, the dynamic load flow analysis of DS can be performed for covering different simulation needs such as off-line simulation, fast simulation, CHIL and PHIL. This method is an advanced strategy for simulating large-scale distribution systems in unbalanced conditions; covering the basic needs for the implementation of smart grid applications.

Page generated in 0.1311 seconds