Spelling suggestions: "subject:"4cells"" "subject:"50cells""
151 |
B cells in Autoimmunity : Studies of Complement Receptor 1 & 2 and FcγRIIb in Autoimmune ArthritisProkopec, Kajsa January 2009 (has links)
B cells are normally regulated to prevent activation against self-proteins through tolerance mechanisms. However, occasionally there is a break in tolerance and B cells can become self-reactive, which might lead to the development of autoimmune disease. The activation of self-reactive B cells is regulated by receptors on the B cell surface, such as Fc gamma receptor IIb (FcγRIIb), complement receptor type 1 (CR1), and CR type 2 (CR2). In this thesis I have studied the role of FcγRIIb, CR1 and CR2 on B cells in autoimmune arthritis. By using a model for rheumatoid arthritis, I discovered that the initial self-reactive B cell response in arthritis was associated with the splenic marginal zone B cell population. Marginal zone B cells express high levels of CR1/CR2 and FcγRIIb, suggesting that they normally require high regulation. Further, female mice deficient in CR1/CR2 displayed increased susceptibility to arthritis compared to CR1/CR2-sufficient female mice. When investigating whether sex hormones affected arthritis susceptibility, we found that ovariectomy, of the otherwise fairly resistant CR1/CR2-sufficient mice, reduced the expression of CR1 on B cells and rendered the mice more susceptible to arthritis. In humans, a significantly reduced CR1 and FcγRIIb expression was found on B cells in aging women, but not in men. This may contribute to the increased risk for women to develop autoimmune disease as reduced receptor expression may lead to the activation of self-reactive B cells. In agreement, lower CR1, CR2 and FcγRIIb expression was seen in patients with rheumatoid arthritis. Finally, a soluble form of FcγRIIb was used to investigate FcγRIIb’s ability to bind self-reactive IgG in an attempt to treat autoimmune arthritis. Treatment of mice with established arthritis was associated with less self-reactive IgG antibodies and consequently less disease, suggesting that soluble FcγRIIb may be used as a novel treatment in arthritis.
|
152 |
Cutaneous resistance against Francisella tularensisStenmark, Stephan January 2004 (has links)
Francisella tularensis, the causative agent of tularemia, is a potent pathogen in humans and other mammals. The ulceroglandular form of the disease is the most common expression in humans with a clinical picture characterized by a skin ulcer, enlarged regional lymph nodes and fever. Despite being a preferred route of infection, the skin also affords an effective defense barrier against F. tularensis. Doses required to induce infection by intradermal inoculation are several logs higher than those needed for infection by other routes. In the present thesis, the requirements for the local and systemic host defense to intradermal infection with F. tularensis was studied in experimental mouse models. Naïve mice and mice immunized by previous infection were challenged, mostly with the live vaccine strain F. tularensis LVS but also with a clinical isolate of F. tularensis. In naïve mice, intradermal inoculation of F. tularensis LVS resulted in a rapid increase of bacterial numbers during the first few days in the skin, lymph nodes, spleen and liver, followed by a decrease and eradication of the bacteria within two weeks of inoculation. Immune mice controlled the infection at the site of infection and very few bacteria spread to internal organs. When immunohistochemical staining of skin specimens was performed during the first 3 days, naïve mice showed a weak or barely discernible local expression of TNF-α, IL-12 and IFN-γ. In immune mice, the expression of all three cytokines was strongly enhanced, TNF-α and IL-12 within 24 h and IFN-γ within 72 h of inoculation. To investigate the role of T cells in the defense against intradermal infection with F. tularensis LVS, naïve and immune T-cell knockout mice (e.g., αβ TCR-/-, γδ TCR-/-, αβγδ TCR-/-) were used. Naïve mice lacking the αβ TCR had persistently high bacterial numbers in all organs and died at 4 weeks. Mice lacking the γδ TCR, on the other hand, controlled the infection as effectively as did wild-type mice. To enable αβ TCR-/- and αβγδ TCR-/- mice to survive, antibiotic treatment was given from day 10 to 20 of infection. When intradermally challenged 2 weeks later, these animals were found to control a secondary infection, resulting in decreasing viable counts in skin and lymph nodes and prevention of spread to liver and spleen. The results indicated the presence of a T-cell independent mechanism of resistance and analyses of serum showed high levels of F. tularensis-specific IgM, findings suggesting a role for antibodies in the protection against cutaneous tularemia. To study the effect of F. tularensis-specific antibodies on host resistance, we adoptively transferred immune serum to B-cell-deficient mice. After receiving immune serum, both naïve and immunized mice became capable of surviving an otherwise lethal dose of F. tularensis LVS. Moreover, transfer of immune serum to wild type mice, afforded significant protection to a lethal dose of a wild-type strain of F. tularensis subsp. holarctica, as disclosed by reduced bacterial counts in spleen and liver. Finally, we studied the effect of immune serum on the local expression of proinflammatory cytokines and neutrophils in response to an intradermal injection of F. tularensis LVS. As compared to normal serum, transfer of immune serum resulted in increased expression of TNF-α, IL-12 and neutrophils. These findings afford a possible explanation for the effect of specific antibodies in the local host protection in the skin against tularemia.
|
153 |
The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cellsGreen, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
|
154 |
The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cellsGreen, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
|
155 |
Activation, adhesion and motility of B lymphocytes in health and diseaseGerasimcik, Natalija January 2013 (has links)
B cells can be activated by T cell-dependent stimuli, such as CD40 ligation and cytokines, which induce extensive proliferation, class switch recombination and somatic hypermutation. Epstein-Barr virus (EBV) can also induce B cell activation by mimicking T cell help through its main oncoprotein, latent membrane protein 1 (LMP-1). It is regulated by another EBV-encoded protein, EBV nuclear antigen 2 (EBNA-2), which is absent in Hodgkin and Burkitt lymphomas. We have studied LMP-1 induction by cytokines in vitro and shown that LMP-1 is induced through the transcription factor signal transducer and activator of transcription (STAT6) and a newly defined high-affinity STAT6-binding site. When IL-4 is added together with lipopolysaccharide (LPS) or α-CD40 to B cells, it induces homotypic round and tight aggregates in vitro, whereas LPS alone does not induce such morphological changes. I describe here attempts to identify the molecules that regulate these responses. I have shown that the Rho GTPase Cdc42 controls the spreading of B cells, whereas two other molecules in the same family, Rac1 and Rac2, control homotypic adhesion. Further, I have shown by conditional deletion of Cdc42 in B cells that it is important in the humoral immune response. Dock10 is a guanosine nucleotide exchange factor (GEF) for Cdc42. It is expressed through all differentiation stages of B cell development. However, targeted deletion of Dock10 in B cells does not result in an aberrant phenotype. Furthermore, by studying conditional knockout mice for Dock10, Cdc42, Rac1 and Rac2, I have elucidated the mechanism of cytoskeletal changes during B cell activation, leading to adhesion and motility. My results may lead to a better understanding of normal B cell activation and of EBV infection, which is associated with many human tumours and may help to understand cancer development and progression in B cells. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.</p>
|
156 |
Detection of Bacterial Flora in Biological Secretions Using Antibodies Developed In Vitro and Immobilized in a Surface Plasmon Resonance SystemSowdamini, Nakka Sravya January 2011 (has links)
Identification of pathogens living in biofilms of chronic infections has been difficult with PCR, serological, biochemical and culture techniques. The study aims at the detection of bacterial pathogens in biofilms of biological secretions using SPR analysis Biacore. The antibodies were developed by isolating mononuclear lymphocytes from the blood of the patients who sustained systemic infection. The isolated lymphocytes had antibody secreting B cells (plasma cells) which were identified using flow cytometry analysis. The antibodies produced (n=4) were used to immobilize CM5 chip of Biacore to detect the bacteria in ulcer secretions with wound secretions of healthy volunteers as controls. The results from Surface Plasmon Resonance (SPR) analysis and culture technique were compared and statistically there was no significant difference obtained. The results from present study suggest that SPR analysis could be used as an alternative system for detection of bacteria in poly-microbial samples and detect the organisms that might not be discovered by culture or PCR method.
|
157 |
Transcriptional analysis of chicken immune cells following exposure to 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD)Puebla-Osorio, Nahum 12 April 2006 (has links)
In the present investigation, microarray analysis was used to identify potential TCDD gene targets. Three microarray experiments were performed to study the effect of TCDD in an established chicken B-cell line (DT40), in a chicken macrophage cell line (HD11), and in the bursa of Fabricius from embryos exposed in ovo at 6 days of incubation. From the DT40 microarray analyses, clones with sequence similarity to the apoptotic genes caspase 8 and caspase 9, and the transcription factor NFΜB, among others, were identified. Real-time quantitative polymerase chain reaction (RT-PCR) revealed that TCDD elicits aryl hydrocarbon receptor (AhR)-mediated apoptosis in the avian DT40 pre-B-cell line through activation of caspases 9 and 3 (see chapter III). During the course of the HD11 microarray analyses, a consistent down-regulation of the matrix metalloprotease MMP-2 was observed. This finding was the basis for the hypothesis that TCDD has an effect on the gene expression of the MMP-2 and MMP-9 in macrophages. Then, gene expression analysis and functional zymography showed that TCDD impairs the MMP-2 and MMP-9 response to LPS stimulation in HD11 chicken macrophages (see chapter V). The microarray analyses of the embryonic bursa of Fabricius provided the basis to further study of the effect of TCDD in the chicken embryo. The shifted genes were classified according to their function. The down-regulated genes included: precursor of matrix metalloprotease-inhibitor, histone acyl-transferase 1, homeobox protein CUX-2, Death Associated Protein Kinase, and UDPglucosyl transferase, among others. The up-regulated genes included: phosphoinositidespecific phospholipase, acyl Co-A oxidase, and protein effector of Cdc42, among others.
Together, these microarray analyses produced a database of genes of interest that will provide sufficient hypotheses to inspire multiple investigations aimed at confirming and refining the gene expression alterations as a consequence of TCDD exposure.
|
158 |
Silencing of B cell activation factor gene and its implication in treating autoimmune arthritisLin, Yan-kai., 林欣佳. January 2007 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
159 |
Defects in early B lymphocyte development in Zmpste24⁻′⁻ miceZhou, Shuangcheng., 周雙宬. January 2009 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
|
160 |
Rôle du CD40 dans la mort cellulaireJundi, Malek January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
Page generated in 0.0993 seconds