• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 11
  • 9
  • 7
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 77
  • 67
  • 67
  • 60
  • 28
  • 25
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

P300-Based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): People With Amyotrophic Lateral Sclerosis (ALS) vs. Age-Matched Controls

McCane, Lynn M., Heckman, Susan M., McFarland, Dennis J., Townsend, George, Mak, Joseph N., Sellers, Eric W., Zeitlin, Debra, Tenteromano, Laura M., Wolpaw, Jonathan R., Vaughan, Theresa M. 01 January 2015 (has links)
Objective: Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Methods: Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6. ×. 6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. Results: BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). Conclusions: The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). Significance: P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities.
102

Neural Representation of Somatosensory Signals in Inferior Frontal Gyrus of Individuals with Chronic Tetraplegia

Ketting-Olivier, Aaron Brandon 25 January 2022 (has links)
No description available.
103

EEG biofeedback rozhraní lidského mozku a počítače / EEG Biofeedback Human Brain - Computer Interface

Kněžík, Jan January 2007 (has links)
This master thesis dwells on EEGbiofeedback (also called Neurofeedback) interface of human brain and the computer and its concrete realization in Java programming language. This system is founded on the basis of the computer, which is accomplishing biological feedback (biofeedback) and the electroencephalography (EEG) by helping that state's scanning of user's brain is realized. By this way is possible to practise the human brain effectively to achieve better concentration, the elimination of sleeping and learning deficiency. Hereafter is the suggestion of direction control of computer mouse by EEG device incorporated, which makes it possible for the man to regulate the direction of the cursor's movement on the screen by the frequency of brain's oscillation. The motivation for solution of this problem is the effort to help to handicapped people to communicate with surrounding world. The introduction of this paper contains the basic facts about human brain, electroencephalography and EEG biofeedback. The following chapters dwell on the specification of claims to developed application, its suggestion and description of actual realization. The final part relates to the BCI (Brain-Computer Interface) systems and suggestion of computer's control by EEGappliance with evaluation of attained results.
104

<b>Collaborative Human and Computer Controls of Smart Machines</b>

Hussein Bilal (17565258) 07 December 2023 (has links)
<p dir="ltr">A Human-Machine Interaction (HMI) refers to a mechanism to support the direct interactions of humans and machines with the objective for the synthesis of machine intelligence and autonomy. The demand to advance in this field of study for intelligence controls is continuously growing. Brain-Computer Interface (BCI) is one type of HMIs that utilizes a human brain to enable direct communication of the human subject with a machine. This technology is widely explored in different fields to control external devices using brain signals.</p><p dir="ltr">This thesis is driven by two key observations. The first one is the limited number of Degrees of Freedom (DoF) that existing BCI controls can control in an external device; it becomes necessary to assess the controllability when choosing a control instrument. The second one is the differences of decision spaces of human and machine when both of them try to control an external device. To fill the gaps in these two aspects, there is a need to design an additional functional module that is able to translate the commands issued by human into high-frequency control commands that can be understood by machines. These two aspects has not been investigated thoroughly in literatures.</p><p dir="ltr">This study focuses on training, detecting, and using humans’ intents to control intelligent machines. It uses brain signals which will be trained and detected in form of Electroencephalography (EEG), brain signals will be used to extract and classify human intents. A selected instrument, Emotiv Epoc X, is used for pattern training and recognition based on its controllability and features among other instruments. A functional module is then developed to bridge the gap of frequency differences between human intents and motion commands of machine. A selected robot, TinkerKit Braccio, is then used to illustrate the feasibility of the developed module through fully controlling the robotic arm using human’s intents solely.</p><p dir="ltr">Multiple experiments were done on the prototyped system to prove the feasibility of the proposed model. The accuracy to send each command, and hence the accuracy of the system to extract each intent, exceeded 75%. Then, the feasibility of the proposed model was also tested through controlling the robot to follow pre-defined paths, which was obtained through designing a Graphical-User Interface (GUI). The accuracy of each experiment exceeded 90%, which validated the feasibility of the proposed control model.</p>
105

Evaluating Multi-Modal Brain-Computer Interfaces for Controlling Arm Movements Using a Simulator of Human Reaching

Liao, James Yu-Chang 02 September 2014 (has links)
No description available.
106

Restoring Thought-Controlled Movements After Paralysis: Developing Brain Computer Interfaces For Control Of Reaching Using Functional Electrical Stimulation

Young, Daniel R. 31 August 2018 (has links)
No description available.
107

L'électrophysiologie temps-réel en neuroscience cognitive : vers des paradigmes adaptatifs pour l'étude de l'apprentissage et de la prise de décision perceptive chez l'homme / Real-time electrophysiology in cognitive neuroscience : towards adaptive paradigms to study perceptual learning and decision making in humans

Sanchez, Gaëtan 27 June 2014 (has links)
Aujourd’hui, les modèles computationnels de l'apprentissage et de la prise de décision chez l'homme se sont raffinés et complexifiés pour prendre la forme de modèles génératifs des données psychophysiologiques de plus en plus réalistes d’un point de vue neurobiologique et biophysique. Dans le même temps, le nouveau champ de recherche des interfaces cerveau-machine (ICM) s’est développé de manière exponentielle. L'objectif principal de cette thèse était d'explorer comment le paradigme de l'électrophysiologie temps-réel peut contribuer à élucider les processus d'apprentissage et de prise de décision perceptive chez l’homme. Au niveau expérimental, j'ai étudié les décisions perceptives somatosensorielles grâce à des tâches de discrimination de fréquence tactile. En particulier, j'ai montré comment un contexte sensoriel implicite peut influencer nos décisions. Grâce à la magnétoencéphalographie (MEG), j'ai pu étudier les mécanismes neuronaux qui sous-tendent cette adaptation perceptive. L’ensemble de ces résultats renforce l'hypothèse de la construction implicite d’un a priori ou d'une référence interne au cours de l'expérience. Aux niveaux théoriques et méthodologiques, j'ai proposé une vue générique de la façon dont l'électrophysiologie temps-réel pourrait être utilisée pour optimiser les tests d'hypothèses, en adaptant le dessin expérimental en ligne. J'ai pu fournir une première validation de cette démarche adaptative pour maximiser l'efficacité du dessin expérimental au niveau individuel. Ce travail révèle des perspectives en neurosciences fondamentales et cliniques ainsi que pour les ICM / Today, psychological as well as physiological models of perceptual learning and decision-making processes have recently become more biologically plausible, leading to more realistic (and more complex) generative models of psychophysiological observations. In parallel, the young but exponentially growing field of Brain-Computer Interfaces (BCI) provides new tools and methods to analyze (mostly) electrophysiological data online. The main objective of this PhD thesis was to explore how the BCI paradigm could help for a better understanding of perceptual learning and decision making processes in humans. At the empirical level, I studied decisions based on tactile stimuli, namely somatosensory frequency discrimination. More specifically, I showed how an implicit sensory context biases our decisions. Using magnetoencephalography (MEG), I was able to decipher some of the neural correlates of those perceptual adaptive mechanisms. These findings support the hypothesis that an internal perceptual-reference builds up along the course of the experiment. At the theoretical and methodological levels, I propose a generic view and method of how real-time electrophysiology could be used to optimize hypothesis testing, by adapting the experimental design online. I demonstrated the validity of this online adaptive design optimization (ADO) approach to maximize design efficiency at the individual level. I also discussed the implications of this work for basic and clinical neuroscience as well as BCI itself
108

Méthodes pour l'électroencéphalographie multi-sujet et application aux interfaces cerveau-ordinateur / Methods for multi-subject electroencephalography and application to brain-computer interfaces

Korczowski, Louis 17 October 2018 (has links)
L'étude par neuro-imagerie de l'activité de plusieurs cerveaux en interaction (hyperscanning) permet d'étendre notre compréhension des neurosciences sociales. Nous proposons un cadre pour l'hyperscanning utilisant les interfaces cerveau-ordinateur multi-utilisateur qui inclut différents paradigmes sociaux tels que la coopération ou la compétition. Les travaux de cette thèse comportent trois contributions interdépendantes. Notre première contribution est le développement d'une plateforme expérimentale sous la forme d'un jeu vidéo multijoueur, nommé Brain Invaders 2, contrôlé par la classification de potentiels évoqués visuels enregistrés par électroencéphalographie (EEG). Cette plateforme est validée par deux protocoles expérimentaux comprenant dix-neuf et vingt-deux paires de sujets et utilise différentes approches de classification adaptative par géométrie riemannienne. Ces approches sont théoriquement et expérimentalement comparées et nous montrons la supériorité de la fusion des classifieurs indépendants sur la classification d'un hypercerveau durant la seconde contribution. L'analyse de coïncidence des signaux entre les individus est une approche classique pour l'hyperscanning, elle est pourtant difficile quand les signaux EEG concernés sont transitoires avec une grande variabilité (intra- et inter-sujet) spatio-temporelle et avec un faible rapport signal-à-bruit. En troisième contribution, nous proposons un nouveau modèle composite de séparation aveugle de sources physiologiquement plausibles permettant de compenser cette variabilité. Une solution par diagonalisation conjointe approchée est proposée avec une implémentation d'un algorithme de type Jacobi. A partir des données de Brain Invaders 2, nous montrons que cette solution permet d'extraire simultanément des sources d'artéfacts, des sources d'EEG évoquées et des sources d'EEG continues avec plus de robustesse et de précision que les modèles existants. / The study of several brains interacting (hyperscanning) with neuroimagery allows to extend our understanding of social neurosciences. We propose a framework for hyperscanning using multi-user Brain-Computer Interfaces (BCI) that includes several social paradigms such as cooperation or competition. This dissertation includes three interdependent contribution. The first contribution is the development of an experimental platform consisting of a multi-player video game, namely Brain Invaders 2, controlled by classification of visual event related potentials (ERP) recorded by electroencephalography (EEG). The plateform is validated through two experimental protocols including nineteen and twenty two pairs of subjects while using different adaptive classification approaches using Riemannian geometry. Those approaches are theoretically and experimentally compared during the second contribution ; we demonstrates the superiority in term of accuracy of merging independent classifications over the classification of the hyperbrain during the second contribution. Analysis of inter-brain synchronizations is a common approach for hyperscanning, however it is challenging for transient EEG waves with an great spatio-temporal variability (intra- and inter-subject) and with low signal-to-noise ratio such as ERP. Therefore, as third contribution, we propose a new blind source separation model, namely composite model, to extract simultaneously evoked EEG sources and ongoing EEG sources that allows to compensate this variability. A solution using approximate joint diagonalization is given and implemented with a fast Jacobi-like algorithm. We demonstrate on Brain Invaders 2 data that our solution extracts simultaneously evoked and ongoing EEG sources and performs better in term of accuracy and robustness compared to the existing models.
109

A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related Electroencephalogram

Mileros, Martin D. January 2004 (has links)
<p>A Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time. </p><p>Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network. </p><p>A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.</p>
110

A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related Electroencephalogram

Mileros, Martin D. January 2004 (has links)
A Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time. Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network. A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.

Page generated in 0.0196 seconds