61 |
A Feasibility Study of Bioremediation in a Highly Organic Contaminated SoilWalsh, Jami Beth 25 May 1999 (has links)
The focus of this study is on the use of bioremediation, as the primary method of decontamination for a soil contaminated with industrial waste oils. The area from which the samples were taken was used as a disposal site for oily wastewater for a period of more than 20 years. During this time the soil became severely contaminated. The site is approximately 1 acre in area and consists of three distinct soil strata: a solidified petroleum layer, a peat layer and a layer of muck and mud. This soil is approximately 96% organic matter. The purpose of this study is to determine if: given these site characteristics, is bioremediation a feasible option. Three phases were conducted to determine the usefulness of bioremediation in this situation. Phase one focused on the removal of total petroleum hydrocarbons (TPH) through nutrient addition and aeration. Phase two focused on quantifying and characterizing the reductions observed in phase one. Phase three again focused on quantifying and characterizing the reductions observed in phase one. The three phases of the study provided strong evidence that bioremediation was occurring in the soil and therefore, would be a viable means of remediation for a site with similar characteristics.
|
62 |
Microalgal biodegradation of pentachlorophenolTikoo, Vidya January 1996 (has links)
Pentachlorophenol (PCP) is a chlorophenol with a pronounced biocidal activity that has led to its use in a number of applications. It was introduced in the 1930s as a preservative for timber and lumber and since then has found wide use as a biocide in agricultural and industrial applications. Many different physical, chemical and biological methods have been tried for the removal of PCP from wastewater. However, using microalgae for the removal of PCP and other organochlorine compounds from water may prove to be a cheaper alternative and give complete degradation of the compounds. The aim of this project was to study the efficiency of microalgae to degrade PCP. An algal strain named VT -1 and a bacterial strain named AT -14 were isolated from PCP containing conditions in the laboratory. The growth of VT -1 in the presence of PCP was compared with Chlorella emersonii and Chlorella vulgaris in two different autotrophic media. It was observed that VT-1 had the highest IC50 value of 25-26mg }-l PCP and EC50 value of 11.3mg }-1 PCP in S&K medium. With glucose as an additional carbon source the IC50 value for VT-1 in S&K medium was 29-30mg t 1 PCP. Bacterium AT-14 could grow in the presence of PCP, only with glucose as a carbon source. Mineralization of PCP by VT -1 and the two Chlorella strains was compared by using 14C_PCp. With all the three algae exposed to 14C_PCp, only VT-1 showed release of 14C02, which was evidence of mineralization of PCP by VT-1 which occurred only in the presence of light. Bacterium AT-14 did not produce 14C02. However, the consortium of VT-1 and AT-14 showed enhanced 14C02 evolution in the presence of glucose. The release of chloride ions from PCP can also indicate PCP dehalogenation and degradation. The evolution of 14C02 lagged behind chloride release (90 %) indicating that dechlorination of PCP could be the first step in its biodegradation. Breakdown of PCP was also followed by its extraction from the cells and medium. Normally dichloromethane (DCM) was used to extract PCP. The changes in the label extracted in DCM and iso-butanol were studied under different light condjtions, which showed that the 14C counts in DCM reduced and those in iso-butanol extract increased with time. The 14C counts in the iso-butanol extract could be a metabolite of PCP which is more hydrophilic. VT-1 appeared not to degrade PCP completely, since only 15% of 14C was recovered as 14C02. It appears that intermediates are formed which are distributed in the growth medium and in the biomass. It can thus be concluded that VT -1 is tolerant of PCP, appears to dechlorinate PCP and then releases some part of it as CO2.
|
63 |
Studies of the growth of Thiobacillus ferrooxidans ATCC 33020 on elemental sulphurBaker, Steven James January 1996 (has links)
No description available.
|
64 |
Hazard and risk assessment of heavy hydrocarbons undergoing remediationAl-Awadi, Mohammed A. R. January 2010 (has links)
The focus of this thesis is the bioremediation of oil impacted sites. Chapter 3 considered “Oil Lakes” in Kuwait, a consequence of the First Gulf War, which pose a considerable human and environmental hazard. The data revealed that across even a small “Oil Lake”, the hydrocarbon concentration varied significantly and that hydrocarbon concentration was the most important descriptor for determining the rate of remediation. Effective and sustainable bioremediation strategy must be led by the focused use of underpinning empirical data and its application in a predictive capacity. Chapter 4 considered a similar integrated approach to assess the bioremediation potential of historically contaminated soils from Kuwait. The analyses reveal that an optimised combination of chemical and biological characterisation were necessary to monitor processes involved in remediation of heavily weathered oil contaminated soils. A predictive equation derived from empirical chemical and biological data could enhance certainty in the adoption of remedial strategies. Chapter 5 focussed on the toxicity of fractionated crude oils undergoing remediation. Chapter 6 compared a full scale trial of two remediation strategies done on the same site contaminated with bunker-fuel. This trial reveals the benefit of developing risk and hazard-based approaches in defining endpoint bioremediation of heavy hydrocarbons when engineered biopile or window are proposed as treatment option. Bioremediation, to be effectively applied requires a considerably intense monitoring regime. For freshly contaminated soils, there is sound justification for applying a predictive capacity but as the samples age, this becomes less certain. New technologies are evolving which when properly applied and interpreted in the correct context may enhance our ability to sustainably manage hydrocarbon bioremediation.
|
65 |
Construction and characterisation of lux-marked bacteria as biosensorsWeitz, Hedda Johanna January 2000 (has links)
Many sites world-wide are contaminated with a range of pollutants of environmental concern. Bioremediation has the potential to be a cost-effective and efficient alternative clean-up technology. The success of bioremediation is influenced by both biological and environmental factors. A site, therefore, needs extensive characterisation to determine the extent of contamination and to evaluate the potential for bioremediation. Chemical analysis has traditionally been used to determine pollutant concentrations, but it provides no information about the bioavailability of the pollutants. Bioassays are able to complement chemical analyses by showing the bioavailability and ecotoxico logical effects of pollutants. Bioluminescent bacteria have been adapted as biosensors where the response to environmental stresses is monitored by a reduction in light output. Only metabolically active cells produce light and any substance or environmental condition which impairs cell metabolism and, thus, compromises cellular activity and viability will lead to a reduction in light output. Naturally bioluminescent marine bacteria (e.g. Vibrio fischeri) have been used for ecotoxicity testing, but soil and freshwater bacteria that have been marked with lux genes have several advantages. These genetically modified biosensors do not require high salinity and a neutral pH, and they have environmental relevance. A suite of biosensors has been developed at the University of Aberdeen that responds to a wide range of pollutants. These biosensors have been successfully used for acute ecotoxicity measurements. The research carried out in this study was part of a larger ICI project for the assessment and management of bioremediation of a BTEX contaminated site. The aim of this study was to develop a lux-marked biosensor based on a BTEX-degrader. None of the existing biosensors are known to be degraders. Environmental isolates from the ICI site that were able to degrade BTEX were characterised and assessed for their suitability for lux-marking. An appropriate isolate was selected for lux-marking, but the marking was not successful. It was concluded that there are several problems associated with obtaining suitable isolates in pure culture from a site. The enrichment, isolation, identification and characterisation of isolates is laborious and time-consuming, and the lack of characterisation of the isolates can complicate the Iwc-marking attempts. Selecting a well-characterised bacterium for lux-marking avoids these problems. Therefore, Pseudomonas putida FI was selected as the bacterium for lux-marking as a biosensor in this study. It was selected because it is a toluene-degrader and the degradative genes are located on the chromosome. P. putida FI also has environmental relevance for the ICI site. P. putida FI and P. putida FI06 (an isogenic mutant of P. putida FI) were lux-marked with the plasmid pUCD607, and P. putida FI and FI06 pUCD607 were characterised. Characterisation of P. putida FI and FI06 pUCD607 suggested that pUCD607 was not stable even under selective conditions due to segregational instability. This study, therefore, concluded that the plasmid pUCD607 is not appropriate for lux-marking bacteria as biosensors. P. putida FI was lux-marked with the mini-Tn5 luxCDABE transposon and P. putida FI Tn5 luxCDABE was characterised. The integration of the mini-Tn5 luxCDABE cassette did not affect growth of P. putida FI Tn5 luxCDABE and luminescence levels were higher than in P. putida FI pUCD607. P. putida FI Tn5 luxCDABE was also stable in the absence of selective pressure over time. This study, therefore, concluded that the mini-TnJ luxCDABE transposon is appropriate for lux-marking bacteria as biosensors.
|
66 |
Investigation into the bacterial contamination in a spring water distribution system and the application of bioremediation as treatment technologyBehardien, Latiefa January 2008 (has links)
Spring water bottled and sold for human consumption can only be subjected to
certain treatment processes such as separation from unstable constituents by
decantation, filtration and aeration, ultraviolet irradiation and ozonation. A spring
water distribution system in the Western Cape, South Africa was experiencing
microbiological problems. The aim of the study was to investigate bacterial
contamination in the spring water distribution system and the application of
bioremediation as treatment technology. Sampling at various points in the spring
water distribution bottling system started in February 2004 and continued until
November 2004.
The acceptable microbiological limits for bottled spring water clearly states that
the total viable colony count should be < 100 organisms per ml of water. Analysis of
samples by the heterotrophic plate count (HPC) technique indicated significantly
(p < 0.05) high counts which did not conform to the microbiological limit. The
heterotrophic plate counts recorded for weeks one, four, eight & 46 in the final bottled
water (Site J) were 3.66 x 107 cfu/ml, 9.0 x 106cfu/ml, 2.35 x 107 cfu/ml and 5.00 x
104 cfu/ml, respectively. The total cell counts [Flow cytometry analyses (FCM)]
recorded for week one, four, eight & 46 in the final bottled water (Site J) were 5.44 x
107 microorganisms/ml, 8.36 x 107 microorganisms/ml, 9.09 x 107 microorganisms/ml
and 5.70 x 107 microorganisms/ml, respectively. The higher viable total cell counts(FCM) indicate that flow cytometry was able to detect cells in the water sample that
enter a viable but not culturable state and that the heterotrophic plate count
technique only allowed for the growth of the viable and culturable cells present in the
water samples. This indicated that the HPC is not a clear indication of the actual
microbial population in the water samples. It could be concluded that FCM technique
was a more reliable technique for the enumeration of microbial populations in bottled
water samples. Various organisms were identified by means of the Polymerase
Chain Reaction (PCR) using 16S rRNA specific primers. Purified PCR amplicons
were sequenced and Phylogenetic trees were constructed. Neighbour-joining
phylogenetic tree analysis of the bacterial species present in the water samples was
performed. The dominant bacterial isolates that were sequenced from the various
water samples throughout weeks one, four, eight and 46 were Bacillus sp. and
Enterobacteriaceae. The pathogenic species isolated throughout the sampling
period included Escherichia sp., Pseudomonas sp., Shigella boydii, Bacillus and
Staphylococcus sp.
A laboratory-scale bioreactor was constructed and water samples were
analysed over a period of two weeks. Water samples were analysed using FCM and
Direct Acridine Orange Count (DAOC) in conjunction with epiflourescence
microscopy (EM). The FCM counts ranged from 1.53 x 107 microorganisms/ml in the
initial sample (Day 0) to 1.16 x 107 microorganisms/mℓ in the final sample (Day 13).
The results indicated a 24% decrease in the microbial numbers however, it was still
above the limit of < 100 organisms/ml as set out by the South African Standards of
Bottled Water, (2003). The total cell counts obtained by the DAOC method ranged
from 1.43 x 106 microorganisms/ml to 9.54 x 105 microorganism/ml on day 13 (final).
The results indicated a 33% decrease in microbial numbers. The total cell counts
analysed by flow cytometry fluctuated throughout the sampling period. The total cell
counts obtained from the DAOC method were lower in all the water samples when
compared to the total counts obtained by flow cytometric analyses. Even though the
FCM counts fluctuated throughout the sampling period, results clearly show that the
FCM method yielded more accurate data for total cell counts than the DAOC method.
Due to external environmental conditions such as changes in the weather conditions
the results fluctuated and the final results clearly indicated that further studies are
required to optimise the bioreactor system for its application in the spring water industry.
|
67 |
The feasibility of using spent mushroom compost of oyster mushroom as a bioremediating agent.January 1997 (has links)
by Ching Mei Lun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 137-145). / List of Tables --- p.I / List of Figures --- p.III / Abbreviations --- p.VII / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Present situation of municipal solid wastes in Hong Kong --- p.1 / Chapter 1.2 --- Landfill in Hong Kong --- p.1 / Chapter 1.2.1 --- Landfill leachate --- p.9 / Chapter 1.2.1.1 --- Generation --- p.9 / Chapter 1.2.1.2 --- Quality --- p.10 / Chapter 1.2.1.3 --- Environmental hazard --- p.17 / Chapter 1.2.1.4 --- Treatment --- p.18 / Chapter 1.2.1.5 --- Other alternatives --- p.24 / Chapter 1.3 --- Spent mushroom compost --- p.27 / Chapter 1.3.1 --- Production and nature --- p.27 / Chapter 1.3.2 --- Availability --- p.29 / Chapter 1.3.3 --- Physical and chemical properties --- p.31 / Chapter 1.3.4 --- Capabilities to degrade phenolic compounds --- p.31 / Chapter 1.3.5 --- Potential uses --- p.37 / Chapter 1.4 --- Proposal and exp erimental plan --- p.38 / Chapter Chapter 2 --- Materials and Methods --- p.41 / Chapter 2.1 --- Materials --- p.41 / Chapter 2.2 --- Physical and chemical analyses of pollutants --- p.41 / Chapter 2.3 --- Basic studies on removal capacities on potential pollutants --- p.48 / Chapter 2.3.1 --- "Removal of dyes, metals and ammonia" --- p.48 / Chapter 2.3.2 --- Removal of pentachlorophenol --- p.53 / Chapter 2.4 --- Applied studies on removal of pollutants --- p.58 / Chapter 2.4.1 --- Treatment of landfill leachate --- p.58 / Chapter 2.4.2 --- Microcosm to examine the decomposition of refuse --- p.60 / Chapter 2.4.3 --- Phytotoxicity --- p.65 / Chapter 2.5 --- Statistical analysis --- p.65 / Chapter Chapter 3 --- Results --- p.67 / Chapter 3.1 --- Characterization of spent mushroom compost and landfill leachate --- p.67 / Chapter 3.2 --- Removal capacities of spent mushroom compost --- p.67 / Chapter 3.2.1 --- Biosorption of dyes --- p.67 / Chapter 3.2.1.1 --- Evercion yellow --- p.67 / Chapter 3.2.1.2 --- Evercion navy H-ER blue --- p.73 / Chapter 3.2.1.3 --- Congo red --- p.74 / Chapter 3.2.1.4 --- Adsorption isotherm --- p.75 / Chapter 3.2.2 --- Biosorption of metals --- p.75 / Chapter 3.2.2.1 --- Lead --- p.75 / Chapter 3.2.2.2 --- Iron --- p.81 / Chapter 3.2.2.3 --- Cadmium --- p.82 / Chapter 3.2.2.4 --- Adsorption isotherm --- p.82 / Chapter 3.2.3 --- Removal of ammonia --- p.85 / Chapter 3.2.3.1 --- Basic study --- p.85 / Chapter 3.2.3.2 --- Applied removal of ammonia from landfill leachate --- p.85 / Chapter 3.2.3.2.1 --- Effect of indigenous micro-organims in landfill leachate --- p.85 / Chapter 3.2.3.2.2 --- Effect of spent mushroom compost and glucose --- p.85 / Chapter 3.2.3.2.3 --- Effect of sugar cane waste extract --- p.89 / Chapter 3.2.3.2.4 --- Effect of sugar cane waste and concentration of glucose --- p.89 / Chapter 3.2.4 --- Removal of pentachlorophenol --- p.91 / Chapter 3.2.4.1 --- Removal by spent mushroom compost --- p.91 / Chapter 3.2.4.2 --- Identification of two spent mushroom compost micro-organisms --- p.91 / Chapter 3.2.4.3 --- Pentachlorophenol-degrading abilities of the two micro-organisms --- p.99 / Chapter 3.2.5 --- A microcosm to examine the decomposition of refuse --- p.99 / Chapter 3.2.5.1 --- pH --- p.99 / Chapter 3.2.5.2 --- Salinity --- p.99 / Chapter 3.2.5.3 --- Turbidity --- p.103 / Chapter 3.2.5.4 --- Ammonia content --- p.103 / Chapter 3.2.5.5 --- Orthophosphate content --- p.106 / Chapter 3.2.5.6 --- "Inorganic, organic and total carbon contents" --- p.106 / Chapter 3.2.5.7 --- Metals --- p.106 / Chapter 3.2.5.8 --- Gases production --- p.112 / Chapter 3.2.6 --- Phytotoxicity --- p.112 / Chapter Chapter 4 --- Discussion --- p.117 / Chapter 4.1 --- Characterization of the spent mushroom compost --- p.117 / Chapter 4.2 --- Removal abilities of pollutants by the spent mushroom compost --- p.119 / Chapter 4.2.1 --- Metals and dyes --- p.119 / Chapter 4.2.1.1 --- Adsorption --- p.119 / Chapter 4.2.1.2 --- Adsorption specificity --- p.123 / Chapter 4.2.1.3 --- Adsorption isotherm --- p.125 / Chapter 4.2.2 --- Pentachlorophenol --- p.127 / Chapter 4.3 --- Decomposition of refuse --- p.129 / Chapter 4.4 --- Removal of ammonia in landfill leachate --- p.132 / Chapter 4.5 --- Phytotoxicity --- p.133 / Chapter Chapter 5 --- Conclusion --- p.135 / Chapter Chapter 6 --- Reference --- p.137 / Chapter Chapter 7 --- Appendix --- p.146
|
68 |
Bioremediation of the organophosphate pesticide, coumaphos, using microorganisms immobilized in calcium-alginate gel beadsHa, Jiyeon 25 April 2007 (has links)
Coumaphos is an organophosphate insecticide used predominantly by the US Department of Agriculture, Animal and Plant Health Inspection Services for its tick eradication program. Bioremediation of the hydrolysis products of coumaphos, chlorferon and diethylthiophosphate (DETP), using Ca-alginate immobilized cells was the focus of this research. Consortia of indigenous microorganisms capable of degrading chlorferon and DETP were isolated separately. Since chlorferon inhibited both chlorferon-degrading and DETP-degrading organisms, it was not possible to enrich a consortium of organisms for simultaneous degradation of chlorferon and DETP. A two-step growth procedure was developed for degradation studies to provide biomass acclimated to the target compound and reaction medium since cells lost their degradation activity during the growth in a rich medium. Without acclimation, approximately a week-long lag period was required before degradation was initiated. Optimum reaction conditions were found for the degradation of chlorferon and DETP using free cells. Reaction kinetics of chlorferon and DETP were determined using enzyme kinetics because cell growth was not observed during the degradation. Chlorferon degradation followed substrate inhibition kinetics and DETP degradation followed simple Michaelis-Menten kinetics. A calcium-alginate immobilized cell system was developed, and the optimum bead loadings in the reactor were determined. Degradation rates for immobilized cells were enhanced up to five times that for free cells in untreated cattle dip (UCD) solution. The enhanced degradation of immobilized cells was due to protection of the cells from inhibitory substances present in the UCD solution. In addition, physiological changes of cells caused by Ca-alginate immobilization may have contributed to a slightly increased reaction rate in pure solution. Diffusion coefficients of chlorferon and DETP into Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients of chlorferon and DETP increased with increasing agitation speed and decreasing substrate concentration. Increased cell concentration in gel beads caused lower diffusivity. Calcium-alginate gel beads used in this study were not subject to diffusional limitations. Both external and internal mass transfer resistances were negligible, and the degradation rate inside Ca-alginate gel beads was reaction-limited.
|
69 |
Improving Reactivity Against Target Organothiophosphates via Active-Site Directed Mutagenisis of a Bacterial PhosphotriesteraseGithens, Tyler 1986- 14 March 2013 (has links)
Phosphotriesters, also known as organophosphates (OP), represent a class of toxic compounds first synthesized in Germany. Enzymatic removal of harmful insecticides and breakdown products is a promising alternative to skimming or dredging. Wild type bacterial phosphotriesterase (PTE) was screened against 7 agricultural organophosphates: coumaphos, chlorpyrifos, fenitrothion, temephos, profenofos, pirimiphosmethyl and diazinon. The initial results laid the groundwork for a mutagenesis study to investigate the determining factors in enzyme reactivity. Coumaphos is hydrolyzed more efficiently than any other target by the wild type cobalt enzyme (kcat/Km = 2 x 10^7 M^-1s^-1). Coumaphos, fenitrothion and chlorpyrifos had the lowest Km values from the initial screen and were targets for steady state kinetic characterization of active site mutants. Site directed mutagenesis of binding sites was conducted and the most reactive point mutants, F132G, F132V and S308G, were used as backgrounds for subsequent mutation. Seven active site double mutants: F132G/S308G, F132G/S308T, F132V/S308G, F132V/S308T, F132G/I106T, F132V/I106T and G308/W309 were purified to homogeneity for kinetic characterization. The double mutant G308/F132V enhanced chlorpyrifos reactivity relative to the wild type enzyme. This enhancement of reactivity is proposed to result from conformational rearrangement following substrate bond hydrolysis.
|
70 |
Evaluation of Trametes versicolor ability to bioremediate Polycyclic Aromatic Hydrocarbons (PAHs) in different matricesBorràs Camps, Eduard 21 January 2012 (has links)
Com a resultat de les activitats humanes, la contaminació deguda a productes
químics alliberats al medi s’ha convertit en un problema global, essent una
amenaça real per a l’activitat humana. La contaminació pot afectar qualsevol
compartiment de l’ecosistema. Els hidrocarburs derivats del petroli, on s’inclouen
els hidrocarburs policíclics aromàtics (HAPs), són contaminants que afecten de
manera particular el sòl. Actualment existeixen diverses tècniques per a la
restauració d’emplaçaments contaminats, inclosa la bioremediació. La
micorremediació, àrea de coneixement en què s’emmarca la tesi, ha guanyat
atenció en els últims anys ja que és una tècnica ambientalment respectuosa.
Aquest treball presenta els resultats de les investigacions prèvies al
desenvolupament d’un tractament de bioremediació de sols contaminats per
hidrocarburs policíclics aromàtics mitjançant el fong ligninolític Trametes
versicolor. Els resultats de l’esmentada investigació es presenten en tres apartats
diferenciats.
El primer es centra en la producció de biomassa del fong per a posteriors
aplicacions en processos de bioremediació. Es divideix en dues seccions:
• La primera es basa en la producció de biomassa en cultiu submergit. Els
experiments es van centrar en formular un medi definit de cultiu de baix
cost que permetés obtenir nivells elevats de biomassa, en la morfologia
desitjada (pellets). El reactor fluïditzat per polsos d’aire amb control de pH
va resultar ser el més adequat. La producció s’escalà a un bioreactor de 10
litres.
• La segona secció analitza la colonització del fong sobre suports
lignocel·lulòsics provinents de residus agrícoles per a posterior aplicació
en el sòl. La selecció dels millors substrats per a la colonització es va basar
en el nivell de biomassa (ergosterol), la producció de lacasa i la capacitat
de degradar naproxè en 24 hores. Es va demostrar que el fong era capaç de
colonitzar el sòl tant en condicions estèrils com en no estèrils mantenint,
en tot cas, la capacitat degradativa.
El segon apartat es centra en la degradació d’hidrocarburs policíclics aromàtics
pel fong. Es divideix en tres seccions:
• La primera es basa en la selecció d’un surfactant per a la degradació de
HAPs en medi líquid, essent el millor el surfactant no iònic Tween 80. Es
va poder demostrar la capacitat degradativa de diversos HAPs en medi
líquid; tant en experiment per separat com en mescles. Així mateix, també
es va demostrar que en les condicions de cultiu l’enzim lacasa podia
degradar alguns dels compostos.
• La segona secció fa referència a la identificació de productes intermediàris
de degradació d’HAPs. També es va estudiar la capacitat de degradació
d’aquests intermediaris per part del fong.
• En la tercera secció es van provar diferents sistemes de degradació en sòl,
on el bioslurry es presenta com el més efectiu en termes d’eficàcia de
degradació. Es va poder comprovar que en les biopiles airejades el fong va
tenir problemes derivats del rang termofílic assolit.
El darrer apartat es basa en la degradació dels HAPs de la creosota. Es divideix en
dues seccions:
• La primera es centra en la degradació dels HAPs de la fracció aromàtica de
la creosota. Es van estudiar diferents sistemes i es va determinar que el
fong era més eficient en degradació en biopiles. En cultius submergits,
medi líquid i slurry, el fong era efectiu en la degradació d’HAPs de baix
pes molecular però no en aquells d’alt pes molecular. Es va observar
l’efecte inhibitori sobre Trametes tant dels compostos addicionals afegits
junt amb la creosota com en augmentar la concentració de HAPs. !
• La segona secció és fruit de la col·laboració amb el Laboratori de
Biotecnologia Ambiental de l’Institut de Microbiologia de l’Acadèmia de
les Ciències de la República Txeca de Praga. S’estudià l’efecte de la
interacció del fong amb la població microbiana del sòl durant processos
de bioremediació d’HAPs en sòl.!
El treball experimental s’ha dut a terme en el “Grup de degradació de
contaminants industrials i valorització de residus” del Departament d’Enginyeria
Química de la UAB. L’objectiu general de recerca del grup és el
desenvolupament de processos biotecnològics per a degradar compostos
xenobiòtics difícilment degradables per tractaments convencionals. / Como consecuencia de las actividades humanas, la contaminación debida a
productos químicos liberados en el medio se ha convertido en un problema
global, siendo una amenaza real para la actividad y la salud de los seres vivos. La
contaminación puede afectar a cualquier compartimento del ecosistema.
Concretamente, los hidrocarburos derivados del petróleo son contaminantes que
afectan de manera particular al suelo, entre los cuales destacan los hidrocarburos
policíclicos aromáticos (HPAs). Actualmente existen diversas técnicas para la
restauración de emplazamientos contaminados por estos compuestos. Cabe
destacar que en los últimos años la comunidad científica ha centrado
especialmente los esfuerzos en el campo de la micorremediación (área de
conocimiento donde se enmarca la presente tesis) dado que se trata de una
técnica ambientalmente respetuosa.
El trabajo presenta los resultados de las investigaciones previas al desarrollo de un
tratamiento de bioremediación de suelos contaminados por hidrocarburos
policíclicos aromáticos mediante el hongo ligninolítico Trametes versicolor. Los
resultados de la mencionada investigación se presentan en tres apartados
diferenciados.
El primero se centra en la producción de biomasa del hongo para posteriores
aplicaciones en procesos de bioremediación. Se divide en dos secciones:
• La primera se basa en la producción de biomasa en cultivo sumergido. Los
experimentos se centraron en formular un medio de cultivo definido de
bajo coste que permitiera obtener niveles elevados de biomasa, en la
morfología deseada (pellets). El reactor fluidizado por pulsos de aire con
control de pH resultó ser el más adecuado. La producción se escaló a un
bioreactor de 10 litros.
• La segunda sección analiza la colonización del hongo sobre soportes
lignocelulósicos provenientes de residuos agrícolas para posterior
aplicación en el suelo. La selección de los mejores sustratos para la
colonización se basó en el nivel de biomasa (ergosterol), la producción de
lacasa y la capacidad de degradar naproxeno en 24 horas. Se demostró
que el hongo era capaz de colonizar el suelo tanto en condiciones estériles como no estériles manteniendo, en todo caso, la capacidad
degradativa.
El segundo apartado se centra en la degradación de hidrocarburos policíclicos
aromáticos por el hongo. Se divide en tres secciones:
• La primera se basa en la selección de un surfactante para la degradación
de HPAs en medio líquido, siendo el surfactante no iónico Tween 80
aquel que dio mejores resultados. Se pudo demostrar la capacidad
degradativa de diversos HPAs en medio líquido; tanto en experimentos por
separado como en mezclas. Asimismo, también se demostró que en las
condiciones de cultivo la enzima lacasa podía degradar algunos de los
compuestos.
• La segunda sección hace referencia a la identificación de productos
intermediarios de degradación de HPAs. También se estudió la capacidad
de degradación de estos intermediarios por parte del hongo.
• En la tercera sección se probaron diferentes sistemas de degradación en
suelos, donde el bioslurry resultó el más efectivo en términos de eficacia
de degradación. Se pudo comprobar que en las biopilas aireadas el hongo
tuvo problemas derivados del rango termofílico alcanzado.
El último apartado se basa en la degradación de los HPAs de la creosota. Se
divide en dos secciones:
• La primera se centra en la degradación de los HPAs de la fracción
aromática de la creosota. Se estudiaron diferentes sistemas y se determinó
que el hongo era más eficiente en degradación en las biopilas. En cultivos
sumergidos, medio líquido y slurry, el hongo era efectivo en la
degradación de HPAs de bajo peso molecular pero no en aquellos de alto
peso molecular. Se observó el efecto inhibitorio sobre Trametes versicolor
tanto de los compuestos adicionales añadidos junto con la creosota como
al aumentar la concentración de HPAs.
• La segunda sección es fruto de la colaboración con el Laboratorio de
Biotecnología Ambiental del Instituto de Microbiología de la Academia de
las Ciencias de la República Checa en Praga. Se estudió el efecto de la
interacción del hongo con la población microbiana del suelo durante
procesos de bioremediación de HPAs en suelos.
El trabajo experimental se ha llevado a cabo en el "Grupo de degradación de
contaminantes industriales y valorización de residuos" del Departamento de
Ingeniería Química de la UAB. El objetivo general de investigación del grupo es
el desarrollo de procesos biotecnológicos para degradar compuestos xenobióticos
difícilmente degradables mediante tratamientos convencionales. / As a result of human activities pollution aroused as a global concern due to
improper release of chemicals into the environment. Contamination represents a
real threat to humans and can affect any ecosystem compartment. Petroleum
hydrocarbons affect typically soil, including polycyclic aromatic hydrocarbons
(PAHs). Several conventional clean-up techniques are available for site
restoration, including bioremediation. Mycoremediation, attained interest in the
last decades as it is assumed to be an environmental-friendly technique.
This work shows the results of the basic research previous to the development of a
polycyclic aromatic hydrocarbons polluted soil bioremediation treatment by
means of the white rot fungus Trametes versicolor. The results of the mentioned
research are presented in three differentiated sections.
The first section focuses on the fungal biomass production for posterior
applications in bioremediation processes. It is divided into two subsections:
• The first part focuses on biomass production of in submerged cultures. The
experiments were aimed at formulating a low-cost defined medium to
obtain high amounts of biomass, in the preferred morphology (pellets). The
air-pulsed fluidized bioreactors equipped with pH control were the most
appropriate. The production was scaled-up to a 10 liters bioreactor.
• The second part analyzes the fungal colonization of lignocellulosic
supports for further application in soil. The selection of the optimal
substrate for colonization based on active biomass amounts, laccase
production and the capacity to degrade naproxene in 24 hours. It was
demonstrated that the fungus was capable of colonizing soil both under
sterile and non-sterile conditions maintaining, in any case, the degradative
capacity.
The second section focuses on the fungal ability to degrade polycyclic aromatic
hydrocarbons. It is ddivided into three subsections:
• The first part focuses on the selection of an optimal surfactant for PAHs
degradation in liquid medium, obtaining the best results with the non-ionic
surfactant Tween 80. The degradation of several PAHs by T. versicolor in
liquid medium was demonstrated; both in individual-PAHs experiment as well as in PAHs-mixtures. Likewise, it was also demonstrated that under
culture conditions laccase might degrade some of the studied compounds.
• The second section includes the identification of PAHs metabolites arising
from degradation. The fungal degradation capacity of these intermediates
was also examined.
• In the third section different degradation systems of were tested for soil
treatment, the bioslurry resulted as the most effective in terms of
degradation efficiency. It was checked out that in aerated biopiles, the
fungus had problems derived from attaining termophilic ranges.
The last section deals with the creosote-PAHs degradation. It is divided into two
subsections:
• The first part focuses on the fungal PAHs-degradation of the creosote
aromatic fraction. Different systems were studied and it was determined
that the fungus was more efficient at degrading PAHs in biopiles approach.
In submerged cultures, liquid medium and slurry, the fungus was effective
at degrading low-molecular-weight PAHs but not those of high-molecularweight.
It was also observed inhibitory effects on Trametes due to the
additional compounds present in creosote as well as when increasing the
total PAHs concentration.
• The second section is a result of the collaboration with the Laboratory of
Environmental Biotechnology in the Institute of Microbiology, which
belongs to the Academy of Sciences of the Czech Republic (Prague). The
effect on PAHs removal during the interaction between soil microbial
population and white-rot fungi during soil bioremediation processes was
studied.
The experiments have been carried out in the "Group of degradation of industrial
pollutants and valuation of waste" from the Department of Chemical Engineering
in the UAB. The main research motivation of the group is to develop specific
biotechnological processes to degrade xenobiotic compounds that are scarcely
degraded by conventional treatments.
|
Page generated in 0.0363 seconds