• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 75
  • 45
  • 37
  • 15
  • 9
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 500
  • 68
  • 58
  • 52
  • 44
  • 38
  • 38
  • 35
  • 33
  • 33
  • 31
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics

Fansuri, Hamzah January 2005 (has links)
Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene to acrolein, namely, α, β, and γ bismuth molybdates. A significant amount of work has been carried out and reported in the literature, aiming to understand the reaction mechanisms so as to control the reaction process. It has been revealed that the oxidation reaction follows the redox mechanisms and lattice oxygen plays a key role as the main oxygen source for the reaction and controls the catalyst performance. The properties of the lattice oxygen are influenced by the bulk crystalline structure of the catalyst. Therefore, it is possible that the crystal structure influences the performance of the catalyst in promoting the partial oxidation reaction. However, there appears to be a lack of detailed reports in the literature on the relationship between the bulk crystal structure and the activity and selectivity of the catalyst for the partial oxidation reaction. The work reported in this thesis has been designed to achieve an improved understanding of the catalyst structure in relation to the activity and selectivity of the catalyst for the partial oxidation of propylene to acrolein. / In order to fulfil the objectives of this study, several investigation steps have been taken, namely 1) acquiring and analysing the catalyst structural parameters under real reaction conditions as well as at room temperature by means of neutron diffraction and X-ray diffraction, 2) obtaining kinetics from experimentation using a packed-bed reactor operating under differential reactor mode so as to eliminate the mass diffusion effect, and 3) developing and proposing reaction mechanisms which contain events that occur on the crystalline structure of the catalysts, particularly lattice oxygen, during the reaction. Characterisation of the structure of the catalysts has been carried out by means of In-situ neutron diffraction, which has the ability to probe the crystal structure at atomic level. The structure is characterised under simulated reaction conditions to investigate the dynamics of the crystal structure, particularly lattice oxygen, during the reaction. The In-situ diffraction studies have uncovered the relationship between the crystal structure of bismuth molybdates and their selectivity and activity towards the catalytic partial oxidation of propylene to acrolein. The possible active lattice oxygen in the bismuth molybdate structures has been identified. The active lattice oxygen ions are responsible for maintaining redox balance in the crystal lattice and thus control the catalyst activity and selectivity. Mobile oxygen ions in the three bismuth molybdate crystal phases are different. The mobile oxygen ions are O(1), O(11), and O(12) in the α phase; O(3), O(11), O(16), and O(18) in the β phase; and O(1) and O(5) in the γ phase. / The mobile lattice oxygen ions are proposed to be the source of the oxidising oxygen responsible for the selective oxidation of propylene to acrolein. One common feature of all mobile oxygen ions, from a catalyst crystal structure point of view, is that they are all related to molybdenum ions rather than bismuth ions in the lattice. By modifying the physical and chemical environment of the molybdenum oxide polyhedra, it is possible to modify the catalyst selectivity and activity. The diffraction diagnoses have also shown that molybdenum oxide polyhedra in all bismuth molybdate are unsaturated. In contrast, the bismuth oxide polyhedra are over charged. The co-existence of molybdenum ions that are co-ordinately unsaturated with bismuth ions that are over valence-charged promote the formation of allyl radical such as those found in the partial oxidation of propylene to acrolein. The molybdenum ions become propylene-adsorbing sites while the bismuth ions are the active sites to attract hydrogen from the adsorbed propylene, leading to the formation of the allyl intermediate. Oxygen ions from the mobile lattice oxygen are a more moderate oxidant than molecular oxygen. With their mild activity, the partially oxidised products are the main products such as acrolein and formaldehyde when oxygen ions react with the allyl intermediate while more complete combustion products such as carbon oxides and organic acids become the side products. / Investigation into the kinetics and reaction mechanisms has revealed the aforementioned evidence to support the role of the mobile lattice oxygen ions in the partial oxidation of propylene to acrolein. The kinetic experiments have employed the power rate law to model the kinetic data. The model shows that the reaction orders in propylene and oxygen concentrations are a function of the reaction temperature. The reaction order in propylene increases with reaction temperature, from 0.6 at 300°C to 1.0 at 450°C for all the bismuth molybdate catalysts, while the reaction order in oxygen decreases from 0.6 at 300°C to 0 at 450°C. The activation energies are 99.7, 173, and 97.7 kJ.mol-1 for α-Bi2Mo3O12, β-Bi2Mo2O9, and γ-Bi2MoO6, respectively. The changes in reaction orders with respect to propylene and oxygen indicate that the reaction occurs through the redox mechanisms, using the mobile lattice oxygen. The structural dynamics identified earlier explains the decrease in the acrolein selectivity at high temperatures (ca above 390°C). At these temperatures, the mobile oxygen becomes more mobile and more active. As a result, as the mobility of the oxygen ions increase, their reactivity also increases. The increase in the oxygen reactivity leads to unselective, complete oxidation reaction, forming the complete oxidation products CO2 and H2O. The reduction-reoxidation of bismuth molybdate is controlled by the diffusion of oxygen ions in the lattice, because the reduction sites do not have to be adjacent to the oxidation sites. The oxygen diffusion rate is in turn controlled by how mobile the lattice oxygen ions are. / Hence, the mobile oxygen ions discussed earlier control the catalyst activity in catalysing the reaction of propylene partial oxidation. The examination of several reaction mechanism models has given further evidence that the propylene partial oxidation to acrolein occurs via the redox mechanism. In this mechanism, the rate of acrolein formation depends on the degree of fully oxidised sites in the bismuth molybdate. The oxidised sites affect the apparent reaction orders in propylene and oxygen and thus control the kinetics of partial oxidation of propylene to acrolein. The more easily the reduced catalysts are reoxidised, the more active the catalysts in converting propylene to acrolein. A set of reaction steps has been proposed, which adequately reassembles the reaction mechanism. Side product reactions are also identified and included in the mechanisms. The present thesis has revealed a much detailed insight into the role of lattice oxygen in the catalytic partial oxidation of propylene to acrolein over bismuth molybdates and established the relationship between structure and activity and selectivity of the catalyst. This work has laid a foundation for future catalyst design to be based on structural knowledge of the catalysts.
102

Synthesis and structure of new transition metal containing bismuth oxides

Xun, Xiumei 03 June 2002 (has links)
Graduation date: 2003
103

Methodology and natural product synthesis: carbocycles, culpin and sorbicillactone A

Sunasee, Rajesh 11 1900 (has links)
The first chapter of this thesis describes the development of a general method for indirectly effecting radical carbocyclization of an alkyl chain onto an aromatic ring. This process involves a Birch reductive alkylation of aromatic tert-butyl esters, chromium(VI)-mediated oxidation and radical cyclization. The cyclized products are easily aromatized by Saegusa oxidation and treatment with bismuth trichloride. This method forms five- and six-membered benzo-fused carbocycles. Modification allows both formation of non-phenolic products, and the introduction of an additional substituent on the original aromatic ring. The second chapter describes a method for converting tert-butyl benzoates or tert-butyl 1-naphthoates into derivatives having a substituted alkyl group in a 1,4-relationship to an alkyl, aryl, alkenyl or alkynyl group. Key steps in the process involve addition of an organometallic species to a cross-conjugated cyclohexadienone followed by treatment with bismuth trichloride, which results in spontaneous decarboxylative aromatization. The method was successfully applied to the synthesis of the antimicrobial fungal metabolite culpin. The last chapter of this thesis describes synthetic studies towards the marine antileukemic alkaloid, sorbicillactone A. Studies towards the core structure of sorbicillactone A have resulted in a new method of desymmetrization of cross-conjugated cyclohexadienones. The key step involves a highly diastereoselective iodoetherification and radical cyclization, which affords a product that can be elaborated into a -lactone.
104

The Study on Properties of Ferroelectric Materials with Bismuth Content

Wei, Yin-Fang 09 January 2008 (has links)
Bismuth layer structure ferroelectrics (BLSFs) have attracted intensive investigation for the potential use in nonvolatile ferroelectric random access memory (NvRAM/FeRAM) and high temperature piezoelectric devices. In this thesis, there are three kinds of Bi-layered structure ferroelectric ceramics materials prepared by solid-state reaction methods. Investigations have been made on the crystal structure, surface morphology, and dielectric properties of these ferroelectric materials. In the chapter3 of this thesis, ferroelectric materials are SrBi2Ta2O9-based ceramics. One of the materials is SrBi2Ta2O9 composition with excess x wt% Bi2O3 (x=0, 2, and 4). Even 1280oC is used as the sintering temperature of stoichiometric SrBi2Ta2O9 composition, the X-ray diffraction patterns will show that the SrBi2Ta2O9 phase is coexisted with the raw material of Ta2O5 and the secondary phases of SrBi2O4 and BiTaO4. For SrBi2Ta2O9 composition with excess 2wt%- or 4wt%-Bi2O3-doped and sintered at 1040oC, the Ta2O5, SrBi2O4, and BiTaO4 phases are eliminated and only the SrBi2Ta2O9 phase is observed in the X-ray diffraction patterns. The other of SrBi2Ta2O9-based ceramics was doped with V2O5. V2O5 is used to substitute Ta2O5 of the SrBi2Ta2O9 ceramics to form SrBi2Ta2-xVxO9 composition, where x=0.1, 0.2, 0.3, and 0.4. For all SrBi2Ta2-xVxO9 composition, the crystal intensities of the (00l) planes (l =6, 8, 10, 12, and 14) increase with the increase of sintering temperature and saturate at 1050oC-sintered ceramics, and the increase in the crystal intensities of the (008) and (0010) planes are more obvious. For the same sintering temperature, the crystal intensities of the (00l) planes increase with the increase of V2O5 content and saturate at SrBi2Ta1.7V0.3O9 ceramics. In the chapter4, ferroelectric materials are SrBi4Ti4O15-based ceramics. One of the materials is (Sr1-xBax)Bi4Ti4O15 (x=0, 005, 0.1, 0.15, and 0.02), and BaO is used to substitute SrO. Dielectric properties were investigated in the temperature of 25oC~ 805oC at 1MHz. It is found that Curie temperatures are shifted to higher temperature as the BaO content increased. For (Sr1-xBax)Bi4Ti4O15 ceramics sintered at 1150oC, the Curie temperature for x=0, 0.05, 0.1, 0.15, and 0.2 are 645oC, 665oC, 705oC, 725oC, and 745oC, respectively. The other is non-stoichiometric compositions SrBi4Ti4O15+x Bi2O3, (x= -0.04, -0.02, 0, 0.02, and 0.04). From the observations of SEM, the SrBi3.92Ti4O14.88 and the SrBi3.96Ti4O14.94 ceramics reveal a two-phased grain growth, the bar-typed and the irregularly disk-typed grains coexist; The other ceramics will reveal the irregularly disk-typed grains. From the X-ray diffraction patterns, Bi2Ti2O7 and SrTiO3 phases are observed in the SrBi3.92Ti4O14.88 and the SrBi3.96Ti4O14.94 ceramics. Except the SrBi3.96Ti4O14.94 ceramics, the other ceramics have revealed an unapparent splitting peak in the (119) plane. In the chapter5, ferroelectric materials are (Na0.5Bi0.5)TiO3-BaTiO3-based ceramics. The 0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 + x wt% Bi2O3 (x= 0, 1, 2, and 3) ceramics were fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 and BaTiO3 composition was calcined at 850oC and 1100oC, respectly, and then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders were mixed in according to 0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 + x wt% Bi2O3 compositions. The second process was that the raw materials were mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 + x wt% Bi2O3 compositions and then calcined at 900oC. The sintering process was carried out in air for 2h from 1120oC to 1240oC. As the sintering temperatures are higher than 1160oC, the maximum dielectric constants of ceramics made by the second method are higher than those of ceramics by the first method, and the maximum dielectric constant of this ceramics will reveal in the x =1 ceramics. Both ceramics reveal a broaden dielectric constant-temperature curves. The other is (1-x) (Na0.5Bi0.5)TiO3-x BaTiO3 compositions, where x= 0.03, 0.05, and 0.07, formatted by two different methods given above. The dielectric-temperature curves of (1-x) (Na0.5Bi0.5)TiO3-x BaTiO3-based ceramics are almost unchanged as the measured frequency changed from 10 kHz to 1MHz.
105

Synthesis and structural determination of alkali and alkaline earth metal containing bismuth vanadates /

Bliesner, Rebecca J. January 2001 (has links)
Thesis (Ph. D.)--Oregon State University, 2002. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
106

Quantum-size-effect studies in bismuth and antimony /

Lee, Boon-ying, January 1978 (has links)
Ph. D. thesis, University of Hong Kong, 1979.
107

Studies in the photoelectrochemistry of bismuth vanadate using scanning electrochemical microscopy

Park, Hyun Seo 04 March 2014 (has links)
Photoelectrochemical studies were performed on bismuth vanadate (BiVO₄) to understand chemical and physical properties of the photocatalysts, and to improve the photoactivity for water oxidation. Scanning electrochemical microscopy (SECM) was used to screen various dopants for BiVO₄, to calculate the photoconversion efficiencies to chemical energy at BiVO₄ electrodes, and to study the water oxidation intermediate radicals at the surface of BiVO₄. Tungsten and molybdenum doped BiVO₄ (W/Mo-BiVO₄) shows a photocurrent for water oxidation that is more than 10 times higher than undoped BiVO₄. Photoelectrochemical measurements and material analysis were done to discuss the factors that affect performance of BiVO₄. Finite elements analysis was also performed to explain the electron-hole transport and electrochemical reactions at W/Mo-BiVO₄ electrodes in solutions. Addition of conductive or electron accepting materials, e.g. reduced graphene oxide, into BiVO₄ was tried to study the electron-hole transport phenomena in the metal oxide electrodes. Surface adsorbed radicals produced during the water oxidation at W/Mo-BiVO₄ were interrogated by using SECM that the surface coverage and decay kinetics of adsorbed hydroxyl radicals at W/Mo-BiVO₄ were measured. The quantum efficiencies of the injected photon conversion to chemical energy were obtained from the photoelectrochemical measurements by using SECM. SECM techniques and finite elements analysis were also used to measure the faradaic efficiency of water oxidation at W/Mo-BiVO₄ under irradiation. Finally, unbiased water splitting to generate hydrogen and oxygen from water splitting only using photon energy at W/Mo-BiVO₄ electrodes was demonstrated in a dual n-type semiconductor or Z-scheme device. / text
108

Growth of Bi2Se3 on Si substrate by molecular beam epitaxy

Kan, Xin., 阚欣. January 2011 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
109

THE THERMODYNAMIC BEHAVIOR OF BISMUTH IN MATTE, SLAG AND METAL PHASES DURING COPPER SMELTING AND CONVERTING

Araҫ, Sabri January 1980 (has links)
No description available.
110

Methodology and natural product synthesis: carbocycles, culpin and sorbicillactone A

Sunasee, Rajesh Unknown Date
No description available.

Page generated in 0.0247 seconds