• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 83
  • 44
  • 44
  • 27
  • 11
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 671
  • 189
  • 122
  • 108
  • 62
  • 57
  • 55
  • 51
  • 46
  • 46
  • 45
  • 41
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

BLAST DAMAGE MITIGATION IN SUBMERGED SYSTEMS. PHASE I: INTERNAL EXPLOSION

Khalifa, Yasser 11 1900 (has links)
This thesis is focused on quantifying the dynamic performance of lightweight metal sandwich systems under confined explosions, where this effort represents the first of a multi-phase comprehensive research program that is focused on developing blast damage mitigation techniques in submerged structures. A confined explosion occurrence inside such facilities may lead to paralyzing all operations depending on the functions of the affected sections. Subsequently, using sacrificial cladding placed as a physical barrier over critical components that might be vulnerable to a potential explosion is considered to be an effective blast damage mitigation technique. Furthermore, sandwich panels can be an ideal system to be used as sacrificial cladding, as it can be manufactured to possess high stiffness-to-weight ratio and superior energy absorption capabilities. Consequently, an experimental program was performed to investigate the performance of lightweight cold-formed steel sandwich panels under both quasi-static loads and confined explosions, where a total of fifty-seven sandwich panels were tested, considering various core configurations, different core sheet thickness, and different blast load intensity levels. The American ASCE/SEI 59-11 and The Canadian CSA/ S850-12 blast design standards predict the dynamic response of a structure component based on the static resistance function by applying dynamic increase factors. Subsequently, the static resistance functions for the proposed panel configurations were investigated experimentally and compared with the introduced analytical model, in order to quantify accurately the inelastic panel response. The quasi-static test program was performed in two stages, where the first included eighteen single layer core sandwich panels, which represented longitudinal and transverse corrugated core configurations. The results of the first stage configurations demonstrated an efficient strength and stiffness, but showed a lack in energy absorption capabilities and ductility capacity. Therefore, in the second stage, different core configurations were developed, including twenty-one panels representing Bi-directional and X-core double layered core configurations and its counterpart Uni-directional single layer core configuration. The results of the second stage demonstrated an enhancement in the ductility and energy absorption capabilities compared to the configurations tested in the first stage. The residual deformations and failure modes demonstrated were assessed and discussed in details, where web crippling, local buckling and global buckling induced by shear or flexurewere determined. In general the static resistance functions for each tested panel were used to quantify the panels’ yield loads, ultimate capacities, and corresponding displacement levels. Moreover, the influences of both the core configuration and the core sheet thickness on the panels’ stiffness, ductility levels and energy absorption were quantified. Based on the conclusions of the static testing and considering the ductility, capability of energy absorption, and the behavior beyond the elastic zone, two different core configurations were chosen to be tested under confined explosions. Eighteen panels were tested in a cylindrical shape blast chamber representing a typical submerged structure under different scaled distances ranged from 2.82 to 1.09 m/kg1/3, in order to demonstrate different damage state levels in accordance with the blast design standards (ASCE/SEI 59-11, CSA/ S850-12). In the blast testing results, the incident and reflected pressure time histories of the blast wave were measured, while the modified Friedlander equation was used to fit the first positive phase of the reflected pressure histories. In addition, the displacement response histories of the back face of the tested panels were recorded. The measured values of peak incident pressure, peak reflected pressure, incident impulse and the reflected impulse were compared to the predicted values using ConWep (Hyde 1990) considering the spherical explosion, and have shown a good agreement. Furthermore, the failure modes and the post blast damage were determined and compared to the static observations. In order to complement the experimental program, a nonlinear inelastic single degree of freedom model was developed in order to predict the dynamic response of the sandwich panels. The model used the recorded blast load and the static resistance while applying the dynamic increase factors recommended by the standards (ASCE/SEI 59-11, CSA/ S850-12). The model results were in a good agreement with the experimental data. Furthermore, the different ductility and support rotation values obtained experimentally and predicted analytically were related to the different damage levels specified by blast standards. Finally, the influence of sandwich panel core configuration on the dynamic blast response of the tested sandwich panels was discussed. / Thesis / Doctor of Philosophy (PhD)
222

Investigation of Blast Wave Attenuation Using Aluminum Particles

Palavino, Kenji 01 January 2019 (has links)
Detonation is the supersonic mode of combustion that occurs in munitions (military explosives and high explosives). These munitions result in blast waves that are hazardous to human life and structures. As a result, there is a high desire to mitigate these blast waves. One such method is to surround the explosive with mitigants (liquid, granular, and cellular porous material). For the safe storing and use of munitions, it is crucial to study the explosive dispersal of mitigant, the ensuing blast wave attenuation, and specifically, the mechanisms underlying this interaction. Current research involving mitigant blast wave attenuation is conducted in many configurations. The study aims to evaluate one configuration, shock tubes with particle suspension. Blast waves are simulated in the form of detonations initiated by DDT (deflagration-to-detonation) with mitigants in the form of dispersed particles. These dispersed particles included aluminum oxide, Al2O3, and aluminum, Al. The flame-flow interactions are experimentally studied using Particle Image Velocimetry (PIV) and pressure transducers. The effect of particle suspension on blast waves is revealed, portraying a decrease in mitigation performance.
223

The Use of Poly(Lactic Acid) as a Core in Synthetic Platelets to Improve Temperature Stablity

Lashof-Sullivan, Margaret M. 03 June 2015 (has links)
No description available.
224

Investigation of Brass Tubes as Energy Damper in the Underbody Blast Environment

Seidel, Laura Ann 03 August 2017 (has links)
No description available.
225

Design of A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm and Its Implementation

Guo, Xinyu 13 December 2012 (has links)
No description available.
226

SWIRL ORIENTATION EFFECT ON THE INSTABILITY AND THE BREAKUP OF ANNULAR LIQUID SHEETS

ABU-NABAH, BASSAM ABDEL-JABER 02 September 2003 (has links)
No description available.
227

Development of Chromatography and Mass Spectrometry Methods for Explosives Analysis

Mathis, John A. 25 June 2004 (has links)
No description available.
228

Shallow foundation systems response to blast loading

Gamber, Nathan K. January 2004 (has links)
No description available.
229

Surface mine blast design and consultant system

Sun, Wei January 1987 (has links)
No description available.
230

Searching for remotely homologous sequences in protein databases with hybrid PSI-blast

Li, Yuheng 30 November 2006 (has links)
No description available.

Page generated in 0.0183 seconds