• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 83
  • 44
  • 44
  • 27
  • 11
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 674
  • 189
  • 124
  • 108
  • 62
  • 57
  • 56
  • 51
  • 46
  • 46
  • 45
  • 41
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Damage Development in Static and Dynamic Deformations of Fiber-Reinforced Composite Plates

Hassan, Noha Mohamed 27 December 2005 (has links)
A three-dimensional finite element code to analyze coupled thermomechanical deformations of composites has been developed. It incorporates geometric nonlinearities, delamination between adjoining layers, and damage due to fiber breakage, fiber/matrix debonding, and matrix cracking. The three damage modes are modeled using the theory of internal variables and the delamination by postulating a failure envelope in terms of the transverse stresses; the damage degrades elastic moduli. The delamination of adjoining layers is simulated by the nodal release technique. Coupled nonlinear partial differential equations governing deformations of a composite, and the pertinent initial and boundary conditions are first reduced to coupled ordinary differential equations (ODEs) by the Galerkin method. These are integrated with respect to time with the Livermore solver for ODEs. After each time step, the damage in an element is computed, and material properties modified. The code has been used to analyze several static and transient problems; computed results have been found to compare well with the corresponding test results. The effect of various factors such as the fiber orientation, ply stacking sequence, and laminate thickness on composite's resistance to shock loads induced by underwater explosions has been delineated. / Ph. D.
232

Evaluating Microglia Dynamics in Blast and Impact-Induced Neurotrauma and Assessing the Role of Hemostatic Nanoparticles in Microglia Activation

White, Michelle Renee 03 October 2022 (has links)
Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the disparity amongst injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread consequence in military and Veteran populations, and impact-related trauma from contact-related sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present as delayed onset, causing diagnosis to be a major feat when planning for treatment and long-term healthcare. Both preclinical and clinical studies report the neuropathological changes following TBI, yet investigating the distinct mechanistic changes in blast and impact trauma that contribute to pathological disparities has yet to be elucidated. Microglia dynamics play a key role in initiating the inflammatory response after injury, as microglia become activated by undergoing morphological changes that influence their function in the injured brain, and unique signaling pathways influence their functional inflammatory states. While previous literature report on the unique responses of microglia, their mediated-inflammatory responses are still not well defined. This work aimed to investigate the acute and subacute responses of microglia to injury through their diverse activation states following blast and impact trauma. The work herein employed rodent models to investigate these changes, finding that microglia activation was spatially and temporally heterogeneous within and across injury paradigms. Three days following bTBI, activated microglia in the cortex displayed morphologies similar to microglia that are known to increase their interactions with dysfunctional synapses, while dystrophic microglia were prevalent in the hippocampus seven days following injury. Moreover, transhemispheric changes in microglia activation were noted following impact TBI, with stressed/primed microglia responding to immune challenges of the cortex at three days, whereas a unique morphological state that was markedly different from those traditionally reported in CNS injury and disease was present within the hippocampus three- and seven-days following injury. State-of-the-art cell sorting techniques were used for in vivo analysis of microglia, which also exhibited that functional changes of microglia vary between injury paradigms, providing insight into how differences in primary insult may elicit distinct signaling pathways involved in microglia-mediated inflammatory responses. These in vivo studies were then crucial in understanding the malleable responses of microglia to complex injuries such as "blast plus impact" TBI, indicating that phenotypic changes in microglia following this injury are also unique and spatially heterogeneous. To date, therapeutic efforts for TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated novel therapeutic targets, noting that administration of polyester nanoparticles restored microglia to baseline levels following impact. The fundamental research presented in this study is innovative and advantageous as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately, the quality of life for those suffering from a TBI. / Doctor of Philosophy / Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the differences in injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread result in military and Veteran populations, and impact-related trauma from contact sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present later on, causing diagnosis to be a major feat when planning for treatment and long-term healthcare. Microglia play a key role in inducing the inflammatory response after injury, as they change shape and size, which then influences their function in the injured brain. Although prior research reports on the unique responses of microglia, their effects on inflammation following TBI are still not well defined. This work aimed to investigate the early responses of microglia to injury through their diverse activation states following blast and impact trauma. The experiments in this study used animal models, finding that microglia activation can be distinct across time and brain regions, which may be injury-type-specific. To date, therapeutic efforts of TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated beneficial treatments for TBI, noting that administration of nanoparticles helped restore microglia to levels similar to the control group. The fundamental research presented in this study is innovative and important as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately the quality of life for those suffering from a TBI.
233

Development of a method for determining the response of a thin hemispherical shell to the initial pressure pulse of an underwater explosion

Webb, George R. January 1964 (has links)
In this investigation a method is suggested for determining the dynamic, elastic response of a thin hemispherical shell subjected to a head-on attack by the initial shock wave of an underwater explosion. The shell which is fastened to the end of a fixed, semi-infinite tube of the same radius is surrounded by a high density fluid similar to water, and the internal cavity of the shell is filled with a low density fluid similar to air. The initial shock wave moves through the high density fluid. In the neighborhood of the obstacle, the shock front propagates in the direction of the axis of the semi-infinite tube and makes initial contact with the obstruction at the tip of the hemisphere at time equal to 0+. The following basic assumptions are used to define the mathematical model for the physical problem. The shock wave is considered to be a plane pressure pulse with exponential decay, the surrounding fluid is treated as if it were an acoustic medium, and the low density fluid is assumed to exert a constant pressure over the interior surface of the shell. The thin, hemispherical shell is regarded as being constructed of an isotropic, homogeneous, Hookean material of constant thickness. This shell experiences only small displacements. Moreover, in this model, the hemispherical shell is attached to a rigid, semi-infinite tube in such a way that the normal and in-plane displacements of the middle surface of the shell and the slope of the middle surface of the shell in the longitudinal direction are all zero at the shell-tube connection. The investigation for the solution to this axisymmetric problem, in which the mathematical formulations on the displacements of the shell and the velocity potential of the fluid are coupled, is begun with the separation of the displacements of the middle surface of the shell into two parts, ( )<sub>M</sub> and ( )<sub>B</sub> displacements. These are then shown to be analogous to the "membrane" and "pure bending" displacements familiar in the theory of static shells. The governing equations and the determinative conditions for the ( )<sub>M</sub> displacements are found to be independent of the ( )<sub>B</sub> displacements, while in the ( )<sub>B</sub> formulation the ( )<sub>M</sub> displacements are found to appear only in the determinative conditions. An approximate solution which is valid for small time and in which Poisson's ratio and the in-plane inertia term are assumed to be zero is obtained for the ( )<sub>M</sub> displacements. A complementary solution for the ( )<sub>B</sub> displacements which is valid in the neighborhood of the shell-tube connection is determined by using geometric and kinematic approximations in the ( )<sub>B</sub> formulation. Approximate solutions for the displacements of the middle surface of the shell are then formulated by combining the ( )<sub>M</sub> and ( )<sub>B</sub> expressions above with the assumptions (valid only for the stated small time range) that the ( )<sub>B</sub> contribution to the in-plane displacement is negligible over the entire shell and that the ( )<sub>B</sub> contribution to the normal displacement is negligible except in the region near the shell-tube connection. Numerical results are calculated for a steel shell immersed in sea water and these results are presented in the form of tables and plots. / Ph. D.
234

Epigenetic Mechanisms in Blast-Induced Neurotrauma

Bailey, Zachary S. 06 September 2017 (has links)
Blast-induced neurotrauma (BINT) is a prevalent brain injury within both military and civilian populations due to current engagement in overseas conflict and ongoing terrorist events worldwide. In the early 2000s, 78% of injuries were attributable to an explosive mechanism during overseas conflicts, which has led to increased incidences of BINT [1a]. Clinical manifestations of BINT include long-term psychological impairments, which are driven by the underlying cellular and molecular sequelae of the injury. Development of effective treatment strategies is limited by the lack of understanding on the cellular and molecular level [2a]. The overall hypothesis of this work is that epigenetic regulatory mechanisms contribute to the progression of the BINT pathology and neurological impairments. Epigenetic mechanisms, including DNA methylation and histone acetylation, are important processes by which cells coordinate neurological and cellular response to environmental stimuli. To date, the role of epigenetics in BINT remains largely unknown. To test this hypothesis, an established rodent model of BINT was employed [3a]. Analysis of DNA methylation, which is involved in memory processes, showed decreased levels one week following injury, which was accompanied by decreased expression of the enzyme responsible for facilitating the addition of methyl groups to DNA. The one week time point also showed dramatic decreases in histone acetylation which correlated to decline in memory. This change was observed in astrocytes and may provide a mechanistic understanding for a hallmark characteristic of the injury. Treatment with a specific enzyme inhibitor was able to mitigate some of the histone acetylation changes. This corresponded with reduced astrocyte activation and an altered behavioral phenotype, which was characterized by high response to novelty. The diagnostic efficacy of epigenetic changes following blast was elucidated by the accumulation of cell-free nucleic acids in cerebrospinal fluid one month after injury. Concentrations of these molecules shows promise in discriminating between injured and non-injured individuals. To date, the diagnostic and therapeutic efforts of BINT have been limited by the lack of a mechanistic understanding of the injury. This work provides novel diagnostic and therapeutic targets. The clinical potential impact on diagnosis and therapeutic intervention has been demonstrated. / Ph. D.
235

The effect of blast loading on a guy cable

Kuo, Tzu-Ti 15 June 2012 (has links)
The blast loading on a structure is a function of the incident blast wave characteristics, that is, overpressure and dynamic pressure. But the most damaging effect to the guy cable from a nuclear explosion would be the dynamic pressure caused by the high winds which follow the chock front. This dynamic pressure reaches its maximum value very rapidly, almost zero time after the passage of the shock front, and then decays exponentially as shown by equation (17). The work of this thesis has been the investigation of a guy cable under blast loading by correcting the tension during each small time interval. The results from this procedure are considerably smaller than those in the analytical work of Mr. D. A. Ball. From this point of view, we know that the tension of the cable in such a problem can not be considered as constant. / Master of Science
236

Lower Extremity Biomechanical Response of Female and Male Post-Mortem Human Surrogates to High-Rate Vertical Loading During Simulated Under-Body Blast Events

Cristino, Danielle M. 12 1900 (has links)
During an under-body blast (UBB) event, an improvised explosive device (IED) delivers a high-energy blast beneath a military vehicle, exposing mounted Warfighters to considerable risk of severe lower extremity injuries. Loftis and Gillich (2014) determined that the lower leg and ankle region is the most common body region to sustain skeletal injury in military mounted combat events, comprising twenty-one percent of cases reported in the Joint Trauma Analysis and Prevention of Injuries in Combat (JTAPIC) database between 2010 and 2012. Injuries of the lower extremity are not always life-threatening. However, from a survivability standpoint, these injuries may affect the ability of the Warfighter to self-extricate and ambulate in the immediate aftermath of an UBB event. In addition, lower extremity injuries can lead to long term health complications and reduced quality of life (Dischinger et al., 2004). While some comparisons can be drawn from the study of civilian automotive crashes; the impact level, rate, location, and directions in UBB are fundamentally different for the lower extremity. Therefore, substantial research efforts to characterize and assess injuries unique to UBB are essential. The Warrior Injury Assessment Manikin (WIAMan), the Tech Demonstrator version of which was introduced by Pietsch et al. (2016), is the only anthropomorphic test device (ATD) designed to evaluate injury patterns in UBB conditions. However, there are no known injury assessment tools for the female Warfighter at this time. The overarching goal of this research effort is to determine the origin of potential differences in the response of females and males in UBB conditions. The results of this work contribute to the body of research concerning high-rate axial loading of the lower extremity and form the first detailed biomechanical account of UBB effects on female PMHS. This work will inform future decisions regarding the requirements for a valid injury assessment capability for female Warfighters in the UBB environment and the subsequent research needed to support those requirements. Ultimately, advancements can be made in modeling and simulation capabilities, injury assessment criteria, test methodologies, and design approaches for safer military ground vehicles and personal protective equipment (PPE). Improvements in these technologies will reduce morbidity and mortality rates among the U.S. Warfighter population, both male and female. / During an under-body blast (UBB) event, an improvised explosive device (IED) delivers a high-energy blast beneath a military vehicle. Energy from the explosive is imparted to the occupants primarily through the floor and seats of the vehicle, exposing the occupants to considerable risk of injuries to the lower extremity. Compared to civilian automotive crashes, the lower extremities of occupants in UBB scenarios are exposed to greater forces, applied at higher rates, and in different locations and directions. To improve current vehicle systems and personal protective equipment (PPE), it is crucial to develop tools to evaluate injuries in UBB scenarios. One such tool is a test dummy, which is designed to quantify loads, deflections, and accelerations experienced by occupants during a crash. These measured values are compared to accepted thresholds, above which injury is likely to occur. The Warrior Injury Assessment Manikin (WIAMan), which is representative of the 50th-percentile male, is the only test dummy designed to evaluate injuries in UBB conditions. However, there are no known injury assessment tools for the female Warfighter at this time. The overarching goal of this research effort is to determine the origin of potential differences in the response of females and males in UBB conditions. The results of this work contribute to the body of research concerning high-rate axial loading of the lower extremity and form the first detailed biomechanical account of UBB effects on female post-mortem human surrogates (PMHS). The results will inform the development of injury assessment tools for female Warfighters, which will ultimately lead to improvements in technologies to reduce morbidity and mortality rates among the U.S. Warfighter population, both male and female.
237

Channel Estimation Strategies for Coded MIMO Systems

Trepkowski, Rose E. 17 August 2004 (has links)
High transmission data rate, spectral efficiency, and reliability are necessary for future wireless communications systems. In a multipath-rich wireless channel, deploying multiple antennas at both the transmitter and receiver achieves high data rate, without increasing the total transmission power or bandwidth. When perfect knowledge of the wireless channel conditions is available at the receiver, the capacity has been shown to grow linearly with the number of antennas. However, the channel conditions must be estimated since perfect channel knowledge is never known a priori. In practice, the channel estimation procedure can be aided by transmitting pilot symbols that are known at the receiver. System performance depends on the quality of channel estimate, and the number of pilot symbols. It is desirable to limit the number of transmitted pilot symbols because pilot symbols reduce spectral efficiency. This thesis analyzes the system performance of coded multiple-input multiple-output (MIMO) systems for the quasi-static fading channel. The assumption that perfect channel knowledge is available at the receiver must be removed, in order to more accurately examine the system performance. Emphasis is placed on developing channel estimation strategies for an iterative Vertical Bell-Labs Layered Space Time (V-BLAST) architecture. The channel estimate can be sequentially improved between successive iterations of the iterative V-BLAST algorithm. For both the coded and uncoded systems, at high signal to noise ratio only a minimum number of pilot symbols per transmit antenna are required to achieve perfect channel knowledge performance. / Master of Science
238

Response of Isotropic and Laminated Plates to Close Proximity Blast Loads

Coggin, John Moore 17 April 2000 (has links)
The transient response of various plate structures subject to blast loads is analyzed. In particular, simply supported isotropic and laminated composite plates are modeled using the commercial finite element code NASTRAN and the method of modal superposition. Both analysis procedures are used to quantify the linear transient response of such plates subject to uniform and patch blast loads. Furthermore, NASTRAN is used to study the nonlinear response of plates subject to close proximity explosions. Also considered here is the case for which a blast loaded plate impacts another closely neighboring plate. The NASTRAN solution used here accounts for nonlinearities due to large plate deflections, plasticity, and plate-to-plate contact. Many studies are currently available in which the blast load is considered to be spatially uniform across the plate; with a temporal distribution described by step, N-pulse, or Friedlander equations. The novel aspect considered here is the case for which the blast pressure is due to a close proximity explosion, and it is therefore taken to be both spatially and temporally varying. A FORTRAN program is described which automates the application of an arbitrary blast load to a generic finite element mesh. The results presented here are a collection of analyses performed for a variety of parameters important to the dynamic response of blast loaded contacting plates. Conclusions are drawn concerning the influence of the various parameters on the nature of the plate response and the quality of the solution. / Master of Science
239

Numerical Comparison of Muzzle Blast Loaded Structure

Quinn, Xavier Anthony 15 March 2022 (has links)
Modeling and simulation have played an essential role in understanding the effects of blast waves. However, a broad area of engineering problems, such as vehicle structures, buildings, bridges, or even the human body, can benefit by accurately predicting the response to blasts with little need for test or event data. This thesis reviews fundamental concepts of blast waves and explosives and discusses research in blast scaling. Blast scaling is a method that reduces the computational costs associated with modeling blasts by using empirical data and numerically calculating blast field parameters over time for various types and sizes of explosives. This computational efficiency is critical in studying blast waves' near and far-field effects. This thesis also reviews research to differentiate between free-air blasts and gun muzzle blasts and the progress of modeling the muzzle blast-structure interaction. The main focus of this thesis covers an investigation of different numerical and analytical solutions to a simple aerospace structure subjected to blast pressure. The thesis finally presents a tool that creates finite element loads utilizing muzzle blast scaling methods. This tool reduces modeling complexity and the need for multiple domains such as coupled computational fluid dynamics and finite element models by coupling blast scaling methods to a finite element model. / Master of Science / {Numerical integration methods have helped solve many complex problems in engineering and science due to their ability to solve non-linear equations that describe many phenomena. These methods are beneficial because of how well they lend to programming into a computer, and their impact has grown with the increases in computing power. In this thesis, ``modeling and simulation" refers to the characterization and prediction of an event's outcome through the use of computers and numerical techniques. Modeling and simulation play important roles in studying the effects of blast waves in many areas of engineering research such as aerospace, biomedical, naval, and civil. Their capability to predict the outcome of the interaction of a blast wave to vehicle structures, buildings, bridges, or even the human body while requiring limited experimental data has the chance to benefit a wide area of engineering problems. This thesis reviews fundamental concepts of blast waves, explosives, and research that has applied blast loading in modeling and simulation. This thesis describes the complexity of modeling an axially symmetric blast wave interaction by comparing the numerical and theoretical response blast loaded structure.
240

Effect of Corrosion on the Behavior of Reinforced Concrete Beams Subject to Blast Loading

Myers, Daniel Lloyd 13 May 2024 (has links)
Corrosion of reinforcing steel embedded in concrete due to the presence of moisture, aggressive chemicals, inadequate cover, and other factors can lead to deterioration that substantially reduces the strength and serviceability of the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the load carrying capacity of existing reinforced concrete (RC) structures. However, little is known about the relationship between high strain rate blast loading and the degradation effects that govern corrosion damaged structures such as concrete cover cracking, reduction in reinforcement areas, and deterioration of bond between concrete and steel. Ten identical RC beams were constructed and tested, half under blast loading conditions produced using the Virginia Tech Shock Tube Research Facility and the other half under quasi-static loading. The blast tests were conducted to investigate how increasing blast pressure and impulse affect the global displacement response and damage modes of beams subjected to blast loads. The quasi-static tests were performed to establish fundamental data on the load-deflection characteristics of corroded RC beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion (5%, 10%, 15%, and 20%) of the longitudinal reinforcement along the midspan region. The specimens were corroded using an accelerated corrosion technique in a tank of 3% sodium chloride solution and a constant electrical current, creating a controlled environment for varying levels of corrosion. An analytical model was also created using a single degree of freedom (SDOF) approach which predicted the performance of corroded RC beams under blast loading. The results of the quasi-static tests revealed that as corrosion levels increased, the load to cause yielding decreased, the yield displacements decreased, and failure occurred earlier for all specimens. This was accompanied by increased damage to the concrete cover and the addition of longitudinal corrosion induced cracking. For the blast loaded specimens, the results demonstrated that the maximum displacements and residual displacements increased beyond the expected response limits for corrosion levels greater than 5%, but at corrosion levels less than 5% there was no significant change in displacements. Damage levels increased by one or more categories with the introduction of even small levels of corrosion of less than 5%. At corrosion levels greater than 5%, before loading was applied, the specimens exhibited moderate damage due to the introduction of corrosion induced cracking. After loading, the specimens sustained hazardous damage at progressively lower blast volumes. The failure mode changed from ductile to sudden and brittle failure at corrosion levels greater than 5% but remained ductile with flexural failures at low corrosion levels below 5%. The experimental results could be predicted with a high level of accuracy using the SDOF approach, provided that the degraded strength of corroded concrete cover, degraded mechanical properties of corroded steel, length of the corroded region, and determination of either uniform or pitting corrosion are accounted for. Overall, the introduction of corrosion to an RC beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response limits in ASCE/SEI 59 to account for corrosion in RC beams. / Master of Science / The threat of blast loads, resulting from either terrorist attacks or accidental explosions, poses a significant threat to the structural integrity of buildings, life safety of occupants, and the functionality of the structure. Corrosion of reinforcing steel embedded in concrete, due to the presence of moisture, aggressive chemicals, and other factors, can lead to deterioration that substantially weakens the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the strength of existing reinforced concrete structures. However, little is known about the effects of blast loading on the adverse nature that governs corrosion damaged structures. Ten identical reinforced concrete beams were constructed and tested, half under blast loading and the other half under quasi-static loading. The blast loaded beams were subjected to a series of increasing blast volumes until failure was reached. Five identical beams were tested under quasi-static loading to provide a baseline comparison against the blast loaded beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion of the steel reinforcement. An analytical model was also created to predict the performance of corroded reinforced concrete beams under blast loading. The results of the study showed that as corrosion levels increased, the displacements increased beyond the expected response limits. Damage levels became increasingly more severe with the introduction of corrosion at all levels. The behavior changed from ductile to brittle at corrosion levels greater than 5% but remained ductile with flexural failures at corrosion levels below 5%. Overall, the introduction of corrosion to a concrete beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response the limits in the code to account for corrosion in reinforced concrete beams.

Page generated in 0.0234 seconds