1 |
Evaluating Microglia Dynamics in Blast and Impact-Induced Neurotrauma and Assessing the Role of Hemostatic Nanoparticles in Microglia ActivationWhite, Michelle Renee 03 October 2022 (has links)
Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the disparity amongst injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread consequence in military and Veteran populations, and impact-related trauma from contact-related sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present as delayed onset, causing diagnosis to be a major feat when planning for treatment and long-term healthcare. Both preclinical and clinical studies report the neuropathological changes following TBI, yet investigating the distinct mechanistic changes in blast and impact trauma that contribute to pathological disparities has yet to be elucidated.
Microglia dynamics play a key role in initiating the inflammatory response after injury, as microglia become activated by undergoing morphological changes that influence their function in the injured brain, and unique signaling pathways influence their functional inflammatory states. While previous literature report on the unique responses of microglia, their mediated-inflammatory responses are still not well defined. This work aimed to investigate the acute and subacute responses of microglia to injury through their diverse activation states following blast and impact trauma. The work herein employed rodent models to investigate these changes, finding that microglia activation was spatially and temporally heterogeneous within and across injury paradigms. Three days following bTBI, activated microglia in the cortex displayed morphologies similar to microglia that are known to increase their interactions with dysfunctional synapses, while dystrophic microglia were prevalent in the hippocampus seven days following injury. Moreover, transhemispheric changes in microglia activation were noted following impact TBI, with stressed/primed microglia responding to immune challenges of the cortex at three days, whereas a unique morphological state that was markedly different from those traditionally reported in CNS injury and disease was present within the hippocampus three- and seven-days following injury. State-of-the-art cell sorting techniques were used for in vivo analysis of microglia, which also exhibited that functional changes of microglia vary between injury paradigms, providing insight into how differences in primary insult may elicit distinct signaling pathways involved in microglia-mediated inflammatory responses. These in vivo studies were then crucial in understanding the malleable responses of microglia to complex injuries such as "blast plus impact" TBI, indicating that phenotypic changes in microglia following this injury are also unique and spatially heterogeneous. To date, therapeutic efforts for TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated novel therapeutic targets, noting that administration of polyester nanoparticles restored microglia to baseline levels following impact. The fundamental research presented in this study is innovative and advantageous as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately, the quality of life for those suffering from a TBI. / Doctor of Philosophy / Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the differences in injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread result in military and Veteran populations, and impact-related trauma from contact sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present later on, causing diagnosis to be a major feat when planning for treatment and long-term healthcare.
Microglia play a key role in inducing the inflammatory response after injury, as they change shape and size, which then influences their function in the injured brain. Although prior research reports on the unique responses of microglia, their effects on inflammation following TBI are still not well defined. This work aimed to investigate the early responses of microglia to injury through their diverse activation states following blast and impact trauma. The experiments in this study used animal models, finding that microglia activation can be distinct across time and brain regions, which may be injury-type-specific. To date, therapeutic efforts of TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated beneficial treatments for TBI, noting that administration of nanoparticles helped restore microglia to levels similar to the control group. The fundamental research presented in this study is innovative and important as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately the quality of life for those suffering from a TBI.
|
2 |
Effects of Mammalian Target of Rapamycin Inhibition on Circuitry Changes in the Dentate Gyrus of Mice after Focal Brain InjuryButler, Corwin R. 01 January 2016 (has links)
Post-traumatic epilepsy is a common outcome of severe traumatic brain injury (TBI). The development of spontaneous seizures after traumatic brain injury generally follows a latent period of little to no symptoms. The series of events occurring in this latent period are not well understood. Additionally, there is no current treatment to prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling pathway activated in models of TBI and in models of epilepsy is the mammalian target of rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test various outcomes associated with epileptogenesis after TBI. The results from this study suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these results support a role of mTOR activity in both excitatory and inhibitory plasticity in the mouse dentate gyrus after TBI.
|
3 |
Untersuchung des Effektes der Leukotrienbiosynthesehemmung nach experimentellem Schädel-Hirn-TraumaVoigt, Cornelia 26 June 2013 (has links) (PDF)
Gegenstand der Dissertationsschrift ist die Untersuchung des Effektes einer Hemmung der Leukotrienbiosynthese auf die Entwicklung des Schädel-Hirn-Traumas (SHT) nach experimenteller fokaler Kontusionsverletzung im Rattenmodell. Die Ergebnisse der Arbeit wurden im Jahre 2011 in einer Publikation veröffentlicht. Das SHT ist eine schwerwiegende globale Erkrankung mit hoher Inzidenz und Mortalität. Diese führt zu hohen Kosten für das Gesundheitssystem, zum einen durch die akute Behandlung im Krankenhaus, zum anderen durch die sich daran anschließenden rehabilitativen Maßnahmen. Nach der primär biomechanischen Verletzung des Hirns, die nicht beeinflussbar ist, bietet die anschließende sekundäre Hirnschädigung aufgrund verschiedener Stoffwechselprozesse Angriffspunkte für eine (medikamentöse) Therapie des SHT. Die sekundären Hirnschäden werden maßgeblich durch die Entwicklung eines perikontusionellen Hirnödems und dem daraus resultierenden Anstieg des intrakraniellen Druckes beeinflusst. Wie in vorangegangenen Untersuchungen gezeigt werden konnte, kam es nach experimentellem SHT zu einem signifikanten Anstieg der Leukotrienwerte im Liquor von Ratten. Dies warf die Frage nach der Rolle der Leukotriene (LT) im posttraumatischen Hirnstoffwechsel bezüglich der Ödementwicklung auf. Ziel dieser Arbeit war der Nachweis einer direkten Beteiligung von Leukotrienen an der sekundären Hirnschädigung und das Aufzeigen eines möglichen therapeutischen Zuganges durch Substitution von Leukotrienbiosynthesehemmern. Dafür wurde bei adulten Ratten ein fokales SHT induziert. Anschließend wurden in zwei Therapiegruppen zwei unterschiedlich wirkende Leukotrieninhibitoren mehrmalig oral verabreicht und die Ausprägung des SHTs nach 24 bzw. 72 Stunden mittels Magnetresonanztomographie (MRT) und immunhistochemischen Aufarbeitung der Hirne mit einer nicht therapierten Kontrollgruppe verglichen. Bei einem dieser LT-Inhibitoren handelte es sich um ein Weihrauchpräparat, das als Nahrungsergänzungsmittel bereits zu erhalten ist und somit auch potentiell am Menschen zur Anwendung kommen kann. Die Ergebnisse waren vielversprechend und zeigten in beiden Therapiegruppen ein verringertes Kontusionsvolumen im MRT und immunhistochemisch einen geringeren Verlust von Neuronen im perikontusionellen Bereich. Somit scheinen Leukotriene einen Anteil an den sekundären Schädigungsprozessen nach SHT zu tragen. Weitere Untersuchungen, vor allem bezüglich eines eventuell verbesserten klinischen Outcome durch Leukotrienbiosynthesehemmung, erscheinen sinnvoll um den potentiellen Einsatz von LT-Synthesehemmstoffen in der Therapie des SHT in Erwägung ziehen zu können.
|
4 |
ACTIVATION OF HEME OXYGENASE-2 TO IMPROVE OUTCOME AFTER TRAUMATIC BRAIN INJURYLEE, WALLACE 02 July 2014 (has links)
Traumatic brain injury (TBI) is an injury of the brain most often caused by blunt force trauma to the head and typically characterized by an increase in reactive oxygen species (ROS), inflammation, and hemorrhaging. Heme oxygenase (HO) catalyzes the breakdown of heme into carbon monoxide (CO), biliverdin which is further reduced to bilirubin, and ferrous iron. There are two active isoforms: HO-1 which is inducible and found predominantly in liver and spleen tissue; and HO-2 which is constitutive and found predominantly in the brain and testis. The metabolites of heme possess cytoprotective properties that can limit damage resulting from TBI. Our laboratory has found a selective HO-2 activator known as menadione (MD) that has been found to increase HO-2 activity by 4-fold while not affecting HO-1 in vitro. Given the higher amounts of HO-2 found in the brain and the cytoprotective properties of heme metabolites, we postulate that activation of HO-2 using menadione would mitigate further damage after TBI. The rat controlled cortical impact (CCI) model was used to simulate TBI with spontaneous locomotor activity (SLA), spontaneous alternation behaviour (SAB), and beam balance (BB) as the behavioural tasks to assess cognitive and motor function. A dose-response study (25, 50, 100, 200 μmol/kg) was performed to ascertain the effect of MD treatment on injured animals comparing to uninjured controls and injured animals treated with the vehicle (saline). We found that BB performance improved to control levels after MD treatment at 25 μmol/kg and 50 μmol/kg whereas animals treated with saline did not improve. SLA and SAB performance did not improve after treatment with MD. The findings suggest that HO-2 activation may be a viable method in mitigating further injury after TBI. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2014-06-27 19:33:45.645
|
5 |
EFFECTS OF TNFR1 INHIBITION ON NEUROPATHOLOGICAL OUTCOMES IN A CONTROLLED CORTICAL IMPACT MOUSE MODEL OF TRAUMATIC BRAIN INJURYHayashi, Emi 01 December 2023 (has links) (PDF)
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality around the world. It has multiple causative factors including sports injuries, vehicular accidents, war, and other forms of trauma. Though patients can recover, it has the potential to cause mild to severe persistent cognitive deficits. Medical treatment involves treating individual problems as they arise; this treatment is based upon clinical signs. Developing a standard of care for TBI is complex due to the difficulty in finding common cell and molecular changes in TBI variants that can be prevented or ameliorated. Tumor necrosis factor (TNF) is a prominent inflammatory cytokine present in all forms of traumatic brain injury. It is the target of multiple therapies in other disease processes. As TNF inhibitors lead to billions of dollars in worldwide sales, their use in neuropathologies is an active research area. XPro1595, a preclinical drug developed by Xencor, uniquely inhibits more than 99% of soluble TNF. However, there is only one published study to date on the effects of XPro1595 in any model of traumatic brain injury. The purpose of this study was to characterize the presence of TNF and the proinflammatory TNFR1 pathway in a controlled cortical impact (CCI) mouse model of TBI and to determine if XPro1595 could improve behavioral and neuropathological outcomes. TNF and the TNFR1 pathway have shown to be chronically present in a CCI mouse model for at least two weeks. Injured animals treated with one course of the drug did not show any improvements in spatial learning or memory. However, decreased activity in the TNFR1 pathway and changes in glial markers indicated that XPro1595 lessened neuroinflammation via this mechanism. This study suggests potential benefits of XPro1595 in TBI that could lead to a common standard of care.
|
6 |
A Rat Model of Sleep Deprivation Prior to Traumatic Brain InjurySoehnlen, Steve G. 10 May 2011 (has links)
No description available.
|
7 |
Effects of Traumatic Brain Injury on Addiction-Like Behavior and Their Neuropathological CorrelatesMerkel, Steven Franklin January 2017 (has links)
Recent clinical and preclinical reports have identified traumatic brain injury (TBI) as an important risk factor affecting the development of substance use disorders (SUDs). Notably, these studies show that factors like age at the time of injury and TBI severity may increase the risk of substance abuse behavior post-TBI. Furthermore, radiological assessments in clinical TBI populations have observed neuropathology in select brain regions that form key neurocircuits that mediate drug reward and drug-seeking behavior. Therefore, the effects of TBI on the function of these brain structures may influence the risk of substance abuse behavior following brain injury. In order to test the effect of experimental TBI on substance abuse behavior, we utilized two premiere preclinical models: 1) the controlled cortical impact (CCI) model of experimental TBI and 2) a biased, three-phase, cocaine conditioned place preference (CPP) assay. Furthermore, we characterized the effect of experimental TBI on / Pathology
|
8 |
Post-TBI Hippocampal Neurogenesis in Different TBI ModelsPatel, Kaushal S 01 January 2016 (has links)
Traumatic brain injury (TBI) leads to short-term and long-term consequences that can cause many different life-long disorders. Studies of TBI have generally focused on the acute stage; however, it is now becoming important to investigate chronic responses following TBI as clinical reports of dementia and cognitive impairments have been linked to a history of TBI. Recent data have established that cognitive function is associated with hippocampal neurogenesis. Chronic injury induced changes in the brain may affect this endogenous process. Chronic responses following TBI include cell death pathways and inflammatory responses that are persistent in the brain for months to years after injury. In this study we investigate the chronic consequences of TBI on adult neurogenesis and the possible involvement of chronic-inflammation in regulating adult neurogenesis. We used two popular TBI animal models, Control Cortical Impact (CCI) and Lateral Fluid Percussion Injury (LFPI) models, to examine focal and diffuse injury responses respectively. Adult rats received CCI, LFPI, or sham injury and were sacrificed at either 15 days or 3 months after injury to examine either subacute or chronic TBI-induced responses respectively. We found no change in levels of proliferation activity at both time points in both TBI models compared to sham animals. Using Doublecortin immunolabeling we found an enhanced generation of new neurons at 15 days after injury and by 3 months this activity was significantly reduced in both TBI models compared to sham animals. We also found persistent inflammation in the injured brains at both time points. Morphological assessment showed that LFPI model of TBI causes shrinkage of the ipsilateral hippocampus. Our results show that moderate TBI induced hippocampal neurogenesis in both models at the early time post-injury. However, at chronic stage, reduced hippocampal neurogenesis is observed in both models and this is accompanied by chronic inflammation. These results suggest that persistent inflammatory responses maybe detrimental to normal neurogenic activity, leading to cognitive impairment and neurodegeneration in long-term TBI survivors.
|
9 |
Untersuchung des Effektes der Leukotrienbiosynthesehemmung nach experimentellem Schädel-Hirn-TraumaVoigt, Cornelia 13 June 2013 (has links)
Gegenstand der Dissertationsschrift ist die Untersuchung des Effektes einer Hemmung der Leukotrienbiosynthese auf die Entwicklung des Schädel-Hirn-Traumas (SHT) nach experimenteller fokaler Kontusionsverletzung im Rattenmodell. Die Ergebnisse der Arbeit wurden im Jahre 2011 in einer Publikation veröffentlicht. Das SHT ist eine schwerwiegende globale Erkrankung mit hoher Inzidenz und Mortalität. Diese führt zu hohen Kosten für das Gesundheitssystem, zum einen durch die akute Behandlung im Krankenhaus, zum anderen durch die sich daran anschließenden rehabilitativen Maßnahmen. Nach der primär biomechanischen Verletzung des Hirns, die nicht beeinflussbar ist, bietet die anschließende sekundäre Hirnschädigung aufgrund verschiedener Stoffwechselprozesse Angriffspunkte für eine (medikamentöse) Therapie des SHT. Die sekundären Hirnschäden werden maßgeblich durch die Entwicklung eines perikontusionellen Hirnödems und dem daraus resultierenden Anstieg des intrakraniellen Druckes beeinflusst. Wie in vorangegangenen Untersuchungen gezeigt werden konnte, kam es nach experimentellem SHT zu einem signifikanten Anstieg der Leukotrienwerte im Liquor von Ratten. Dies warf die Frage nach der Rolle der Leukotriene (LT) im posttraumatischen Hirnstoffwechsel bezüglich der Ödementwicklung auf. Ziel dieser Arbeit war der Nachweis einer direkten Beteiligung von Leukotrienen an der sekundären Hirnschädigung und das Aufzeigen eines möglichen therapeutischen Zuganges durch Substitution von Leukotrienbiosynthesehemmern. Dafür wurde bei adulten Ratten ein fokales SHT induziert. Anschließend wurden in zwei Therapiegruppen zwei unterschiedlich wirkende Leukotrieninhibitoren mehrmalig oral verabreicht und die Ausprägung des SHTs nach 24 bzw. 72 Stunden mittels Magnetresonanztomographie (MRT) und immunhistochemischen Aufarbeitung der Hirne mit einer nicht therapierten Kontrollgruppe verglichen. Bei einem dieser LT-Inhibitoren handelte es sich um ein Weihrauchpräparat, das als Nahrungsergänzungsmittel bereits zu erhalten ist und somit auch potentiell am Menschen zur Anwendung kommen kann. Die Ergebnisse waren vielversprechend und zeigten in beiden Therapiegruppen ein verringertes Kontusionsvolumen im MRT und immunhistochemisch einen geringeren Verlust von Neuronen im perikontusionellen Bereich. Somit scheinen Leukotriene einen Anteil an den sekundären Schädigungsprozessen nach SHT zu tragen. Weitere Untersuchungen, vor allem bezüglich eines eventuell verbesserten klinischen Outcome durch Leukotrienbiosynthesehemmung, erscheinen sinnvoll um den potentiellen Einsatz von LT-Synthesehemmstoffen in der Therapie des SHT in Erwägung ziehen zu können.:1. Abkürzungsverzeichnis
2. Bibliographische Beschreibung
3. Einleitung: Schädel-Hirn-Trauma
3.1. Einteilung
3.2. Epidemiologie
3.3 Klinik und Therapie
3.4 Posttraumatisches Hirnödem
3.5 Experimentelles Schädel-Hirn-Trauma
3.6 Leukotriene, MK886 und Boscari
4. Originalpublikation
5. Zusammenfassung der Arbeit
6. Referenzen
7. Anlagen
7.1 Erklärung über die eigenständige Abfassung der Arbeit
7.3 Danksagung
|
10 |
RECOVERY OF SENSORIMOTOR FUNCTION IN RATS FOLLOWING ACUTE RAPID EYE MOVEMENT SLEEP DEPRIVATION AND CONTROLLED CORTICAL IMPACTShuster, Jaime Lynn 19 April 2011 (has links)
No description available.
|
Page generated in 0.1888 seconds