• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 109
  • 14
  • 13
  • 12
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 374
  • 159
  • 84
  • 52
  • 49
  • 39
  • 33
  • 32
  • 26
  • 24
  • 23
  • 23
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Desempenho de plantas de canola originadas de sementes microbiolizadas com bactérias promotoras de crescimento / Performance of canola plants originated from seeds microbiolized with growth-promoting bacteria

Perboni, Anelise Tessari 10 January 2014 (has links)
Made available in DSpace on 2014-08-20T13:59:07Z (GMT). No. of bitstreams: 1 tese_anelise_tessari_perboni.pdf: 3320042 bytes, checksum: 7a6c067308b205a4410c66d4f92e4b7c (MD5) Previous issue date: 2014-01-10 / The work aimed to evaluate the photosynthetic traits, growth and production of canola plants originated from seeds microbiolized with growth-promoting bacteria. Sequential tests were developed using different isolates of growth-promoting bacteria in association with canola hybrids. In the first test, 96 isolates were used for the mass selection of growth-promoting bacteria. JIP test parameters obtained from the chlorophyll fluorescence, leaf area and shoot dry weight of the Hyola 433 hybrid were evaluated at 55 days after sowing (DAS). The second test was conducted in two stages with isolates selected in the test I: in the stage I, chlorophyll fluorescence, gas exchange and shoot dry weight of Hyola 433 hybrid were evaluated through three measurements in different periods of the crop cycle; in the stage II, the seedlings emerged, chlorophyll fluorescence, leaf area, leaves, petioles and stems dry weight in plants of the Hyola 61 hybrid were evaluated at 41 DAS. In the third test, the isolated DFs 104, DFs 320, DFs 513 and DFs 628 were used, selected in previous experiments; the seedling emergence, performance indexes, leaf area, dry matter partitioning and chlorophyll index were evaluated during the plants growth. At the end of the experiment, the yield components per plant and grain composition of fatty acids were determined. The correlation between the JIP test parameters and growth variables allowed the determination of interest parameters (F0/FM, FV/F0, ABS/RC, TR0/RC, φPo, PIabs and PItotal) for selection of isolates with potential to promote plant growth. Generally, the JIP test parameters were able to detect changes in the operation of the electron transport chain in plants of different treatments; however the responses were highly variable in each test. Some isolates caused an increase of the growth parameters especially DFs 320, DFs 513 and DFs 628 which also showed trends of increase of yield components. In addition, these isolates did not change the fatty acid composition of canola grains, i.e., the seed microbiolization can promote plant growth without causing changes in the quality of oil obtained. We conclude that chlorophyll fluorescence can be used in the evaluation of photosynthetic responses of plants from seeds microbiolized with bacterial isolates. The seeds microbiolization with bacterial isolates DFs 320 [unidentified], DFs 513 [Pseudomonas veronii] and DFs 628 [Bacillus sp.] promotes increase of Hyola 61 hybrid canola plants growth. / O trabalho teve como objetivo avaliar as características fotossintéticas, o crescimento e a produção de plantas de canola originadas de sementes microbiolizadas com bactérias promotoras de crescimento. Foram desenvolvidos ensaios sequenciais utilizando diferentes isolados de bactérias promotoras de crescimento em associação com híbridos de canola. No primeiro ensaio foram utilizados 96 isolados para a seleção massal de bactérias promotoras de crescimento. Foram avaliados os parâmetros do Teste JIP obtidos a partir da fluorescência da clorofila, a área foliar e a massa seca da parte aérea de plantas do híbrido Hyola 433 aos 55 dias após a semeadura (DAS). O segundo ensaio foi desenvolvido em duas etapas com isolados selecionados no ensaio I: na etapa I avaliaram-se a fluorescência da clorofila, trocas gasosas e a massa seca da parte aérea das plantas do híbrido Hyola 433 por meio de três medições em diferentes períodos do ciclo da cultura; na etapa II procedeu-se a contagem das plântulas emergidas, avaliação da fluorescência da clorofila, área foliar, massa seca das folhas e dos pecíolos e caules nas plantas do híbrido Hyola 61 aos 41 DAS. No terceiro ensaio foram utilizados os isolados DFs 104, DFs 320, DFs 513 e DFs 628, selecionados nos experimentos anteriores; avaliou-se a emergência de plântulas, os índices de performance, a área foliar, a partição de massa seca e o índice de clorofila durante o crescimento das plantas. Ao final do experimento foram determinados os componentes de produção por planta e a composição de ácidos graxos dos grãos. A correlação entre os parâmetros do Teste JIP e as variáveis de crescimento permitiu a determinação de parâmetros de interesse (F0/FM, FV/F0, ABS/RC, TR0/RC, φPo, PIabs e PItotal) para seleção de isolados com potencial para promoção de crescimento das plantas. De forma geral, os parâmetros do Teste JIP foram capazes de detectar modificações no funcionamento da cadeia de transporte de elétrons nas plantas dos diferentes tratamentos, contudo as respostas apresentaram-se bastante variáveis em cada ensaio. Alguns isolados promoveram aumento dos parâmetros de crescimento destacando-se DFs 320, DFs 513 e DFs 628, os quais também apresentaram tendências de incremento dos componentes de produção. Além disso, estes isolados não modificaram a composição de ácidos graxos dos grãos de canola, ou seja, a microbiolização das sementes pode promover o crescimento das plantas sem provocar alterações na qualidade do óleo obtido. Conclui-se que a fluorescência da clorofila a pode ser utilizada nas avaliações das respostas fotossintéticas das plantas provenientes de sementes microbiolizadas com isolados bacterianos. A microbiolização das sementes com os isolados bacterianos DFs 320 [não identificado], DFs 513 [Pseudomonas veronii] e DFs 628 [Bacilus sp.] promove aumento do crescimento das plantas de canola do híbrido Hyola 61.
152

Catabolisme de la proline et du GABA chez le colza : incidence de carences azotée et hydrique / Catabolism of proline and GABA in oilseed rape : impact of water and nitrogen deficiency

Faes, Pascal 17 December 2014 (has links)
Dans le cadre du changement climatique et de l'évolution de la réglementation concernant les intrants azotés, la culture du colza risque d'être fortement pénalisée dans la mesure où c'est une culture qui nécessite d'importants apports azotés pour atteindre son potentiel de rendement. Par ailleurs, comme chez le colza un déficit hydrique induit l'accumulation de certains composés azotés, il est vraisemblable que cela conduise au détournement d'une quantité importante d'azote vers les organes végétatifs aux dépens des organes reproducteurs et donc du rendement. Chez le colza, la réponse métabolique au déficit hydrique se traduit par une très forte accumulation de proline et dans une moindre mesure une augmentation de la teneur en GABA (acide γ-aminobutyrique), deux acides aminés connus chez la plupart des plantes pour leur réponse à de nombreux stress abiotiques. L'objectif de cette thèse est de déterminer comment le métabolisme de ces deux molécules contribue à l'allocation de l'azote au cours du développement de la plante en situation normale comme en condition de stress hydrique et/ou azoté. Pour répondre à cette question nous avons fait le choix de caractériser deux voies enzymatiques majeures impliquées dans le catabolisme de la proline et du GABA : la proline déshydrogénase (ProDH) et la GABA-transaminase (GABA-T) et d'évaluer l'impact de carences hydriques et/ou azotées sur ces voies. Cette étude nécessitait d'identifier au préalable les gènes codant ces enzymes afin d'aborder une approche fonctionnelle. Les résultats montrent l'existence de multiples copies de gènes ProDH et GABA-T dans le génome du colza. L'analyse de leurs profils d'expression suggère que des processus de sub-fonctionnalisation sont en cours conduisant à l'expression spécifique, de certaines copies en réponse aux stress, et d'autres dans les processus développementaux. La comparaison des profils métaboliques avec les profils spécifiques des transcrits a permis d'élaborer des hypothèses sur le rôle de ces voies dans la gestion de l'azote. L'étude conjointe des métabolismes de la proline et du GABA suggère l'existence de régulations connexes entre les deux. Enfin, l'utilisation de plantules a permis - d'approfondir la régulation des gènes étudiés à des stades précoces de développement - et de mettre en évidence les effets délétères de l'inhibition de la GABA-T par une approche pharmacologique. En conclusion ces résultats apportent des précisions sur la régulation de ces deux enzymes et fournissent des éléments de réponse quant au rôle fonctionnel des catabolismes de la proline et du GABA dans les processus de gestion de l'eau et de l'azote chez le colza. Ces travaux constituent donc une première étape dans une démarche de validation de ces gènes comme candidats pour des programmes d'amélioration du colza visant à sélectionner des génotypes mieux adaptés aux conditions environnementales futures. / In the context of climate change and recent regulation concerning nitrogen inputs, the oilseed rape yields may be severely decreased because its crop requires significant nitrogen supply to reach high yield performance. Moreover, as water deficit induces the accumulation of some nitrogen compounds in oilseed rape, it is likely that this could lead to diversion of significant amounts of nitrogen to the vegetative organs at the expense of the reproductive ones and therefore of the yield. In oilseed rape, the metabolic response to water deficit results in a very high proline accumulation and, to a lesser extent, an increased content of GABA (γ-aminobutyric acid), both these amino acids known for their response to many environmental stresses in most species. The objective of the work presented here was to determine how the metabolism of proline and GABA contributes to the nitrogen allocation during plant development under optimal conditions and under water stress and/or nitrogen depletion. To answer this question, we have chosen to characterize two major enzymatic pathways involved in the catabolism of proline and GABA, proline dehydrogenase (ProDH) and GABA transaminase (GABA-T), and assess the impact of water and/or nitrogen deficiency on these pathways. This study has required to preliminary identify the genes encoding these enzymes in order to initiate a functional approach. The results show the presence of multiple copies of ProDH and GABA-T genes in the oilseed rape genome. Analysis of their expression profiles suggests that sub-functionalization processes are occurring, leading to the specific expression of some copies in response to stress, and some in developmental processes. Comparison of metabolic profiles with specific profiles of transcripts allows us to hypothesize about the role of these pathways in management of nitrogen. The combined study of proline and GABA metabolisms suggests the existence of relationships between them. Finally, the use of seedlings allows - further studying the regulation of genes in the early stages of development - and highlighting the deleterious effects of the inhibition of GABA-T by a pharmacological approach. In conclusion these results supply information on the regulation of these two enzymes and provide answers about the functional roles of proline and GABA catabolisms in the management processes of water and nitrogen in oilseed rape. These works constitute a first step in validation process of these genes as putative candidates for oilseed rape breeding programs to select genotypes better adapted to future environmental conditions.
153

The effectiveness of Solanum panduriforme (Mey) based extracts on the cabbage aphid, Brevicoryne brassicae (Linnacus) on brassicas

Mhazo, Mary Louis 18 May 2018 (has links)
PhD (Agric) (Plant Production) / Department of Plant Production / Brassicas are important vegetable crops grown for home consumption and market gardening in eastern and southern Africa. However, productivity is affected by aphids, through both direct feeding and disease transmission. Botanical insecticides have potential to control the aphids, but so far few plants have been evaluated for use on brassicas. This study was conducted to evaluate the effectiveness of Solanum panduriforme to control aphids on brassicas. Botanical extracts from three parts of S. panduriforme were assessed for their insecticidal effects on the cabbage aphid, Brevicoryne brassicae. The extracts from leaf powder (LP), ripe berry powder (BP), fresh ripe berries (RB) and fresh unripe berries (UB) were extracted with four solvents; water, ethanol, hexane and diethyl ether, using homogenisation, maceration and solvent-assisted / sequential extraction methods. The effectiveness of the extracts was determined by laboratory bioassays as well as by plant assays in the screen house and under field conditions. The experiments were replicated three or four times depending on the assays and the design used was completely randomized design (CRD). The immature (LP and UB) plant parts were generally more effective than the mature (BP and RB) plant parts, with mortalities ranging from 100 % down to 40 % respectively depending on assays. Ethanol extracts were more effective than aqueous extracts (LP 96% and 63%; BP 96% and 64%; RB 100% and 64%; UB 100% and 90%). The dried crude extracts from hexane were more effective than di-ethyl ether extracts. The group chemical analysis indicated presence of alkaloids in the berries (BP, RB and UB), which were absent in the leaves (LP). Phenolic compounds and flavonoids were present in all the extracts (LP, BP, RB, and UB). Saponins were present in the fresh parts (RB and UB). The results show how the locally available S. panduriforme plants can be used as an aphicide to control aphids on brassicas. Farmers can directly prepare an easy and cheap botanical / NRF
154

The genetics and physiology of abiotic stress disorder in swede (Brassica napus var. napobrassica)

Fadhel, Faiz January 2014 (has links)
Swedes are extremely common as a root vegetable in Europe, USA, and Canada but are affected by the occasional presence of Brown Heart (BH) disorder affecting the marketable swede root. The incidence of BH has been reported worldwide however it is very difficult to breed resistance due to its sporadic occurrence with no external symptoms to select for. BH has been attributed to boron availability but attempts to link BH appearance definitively with boron deficiency have been difficult. Anecdotal evidence from breeders and growers highlighted the recent co-appearance of BH and frost injury in the field and it was postulated that if an association (physiological or genetic) can be determined between BH appearance and another more easily assessed trait such as frost susceptibility, then a frost tolerance screen may be developed as a useful surrogate method to screen for BH resistance. Frost hardiness assessment of 12 swede genotypes including some F1 hybrids was carried out. Results showed that some genotypes (like Ag31, Me77c and Or13) were more susceptible to frost (EL50 circa -7 ˚C) whilst others (like Gr19 and Ly01) were classified as more tolerant. Breeder trials data from the UK and Germany over a 10 year period showed that 85% of the BH incidence was associated with genotypes that had the frost susceptible lines Ag31, Or13 or Me77c in their parentage. To investigate this association further, frost susceptible and tolerant genotypes, together with a number of their F1 hybrids, were evaluated in a field trial for their response to boron treatments (0.00, 1.35, 1.80 and 2.70 kg B ha-1). At maturity, BH incidence and its severity was predominantly affected by genotype but could be ameliorated by boron application. Ag31 was confirmed to be the most susceptible to BH, and Or13 and Me77c were intermediate in their susceptibility. F1 hybrids between any two susceptible parents were also susceptible to BH. In contrast, genotypes Gr19 and Ly01 were confirmed to be highly resistant to BH and did not show any BH symptoms even at zero boron applied. F1 hybrids between resistant and susceptible lines demonstrated the BH resistant phenotype. Resistance to BH was therefore confirmed as a dominant trait with either a BHBH or BHbh genotype, whilst susceptibility was recessive bhbh. A degree of quantitative variation existed in the severity of the BH suggesting that BH resistance was not a single gene effect. BH severity was significantly negatively correlated (r = - 0.632) with root boron content in susceptible genotypes. The genotypes which were BH resistant in this trial were also more tolerant to frost in screening tests and this association was investigated further at a molecular level. Cold acclimation (CA) for 14 days at 4 ˚C positively affected the response of swede to frost, lowering the EL50 by -1.5˚C, and boron reduced the EL50 by -2.2˚C under non-acclimating conditions and by -1.2˚C under CA. Both boron and CA increased the catalase (CAT) and super oxidase dismutase (SOD) concentrations in swede leaves. Molecular analysis clearly demonstrated the presence of the B.napus cold response gene in swede, BN115, and was shown to be up-regulated due to both CA and boron application but differed between the two genotypes tested. The more frost resistant Gr19 showed a better response than the susceptible Ag31. Boron application reduced EL50 by -2.3˚C for Ag31 and -3.1˚C for Gr19. Given the association between frost tolerance and BH resistance it is suggested that a frost test screen could be used as a useful surrogate method to screen for BH resistance in swede breeding programmes.
155

The role of calcium and potassium in salinity tolerance in Brassica rapa L. cv. RCBr seed

Collins, R. P. January 2012 (has links)
The possibility of manipulating calcium (Ca2+) and potassium (K+) levels in seeds of Brassica rapa by altering parent plant nutrition and investigating the potential for increased salinity tolerance during germination, given that considerable amounts of literature imply that greater amounts of available exogenous Ca2+ and K+ can ameliorate the effects of salinity on both whole plant growth and germination, was evaluated. The investigation consisted of four growth trials. Two preliminary growth trials suggested that seed ion manipulation was possible without affecting the overall growth and vigour of the plant. After developing suitable high and low Ca2+ and K+ nutrient solutions for growth, a trial was carried out in a growth room and greenhouse, with various substrates and the seed of a certain size category was collected for subsequent ion and salinity tolerance analysis. Seed Ca2+ and K+ was significantly affected by growth substrate and nutrient solution and data showed that a significant negative regression relationship existed between seed Ca2+, K+ and Ca2+ + K+ levels and salinity tolerance. Further experimentation using hydroponic culture attempted to remove any possible effects of substrate and also to compare size categories of seed with a view to elucidating localisation of Ca2+ and K+. Seed Ca2+ was found to be significantly altered by nutrient solution in the two different sizes tested and higher Ca2+ nutrient solution was found to increase salinity tolerance in daughter seed. One significant negative regression correlation between salinity tolerance and seed K+ concentration existed in smaller seed, but disregarding seed size in a regression analysis of seed ion content and salinity tolerance, a significant negative relationship existed between seed Ca2+, K+ and Ca2++ K+. The results, especially in terms of Ca2+ nutrition, contradict much previous research that suggests increased salinity tolerance at germination can arise with the increased presence of Ca2+ and/or K+. Salinity tolerance was greater in seeds of larger size across all nutritional treatments and the smaller size range exhibited increased Ca2+ and K+ per μg seed. Ca2+ concentration in smaller seeds with greater surface area:volume ratios provided a clue to the potential localisation of Ca2+. Cross sectional staining showed that a greater proportion of seed Ca2+ may reside in the coat. This was confirmed by analysis which showed an approximate 50% split of total extractable seed Ca2+, regardless of size, between coat and embryo within a seed; the majority of which, per μg, resides in the coat. Further work looked at the relative solubility of the Ca2+ and K+ in these tissues and whole seed to look at the potential bioavailability of Ca2+ during germination from various parts of the seed. Most water soluble Ca2+ exists in the embryo and most insoluble Ca2+ exists in the coat, but coat Ca2+ was found to be ionically exchangeable and therefore bioavailable. K+ appeared mostly water soluble in embryo and coat. In line with previous whole plant research in this species, most Ca2+ is readily water soluble or ionically exchangeable in form and the possible negative effects of how increasing bioavailable Ca2+ may reduce salinity tolerance was discussed.
156

Investigating the link between genetic distance and seed yield in hybrid Brassica napus L. using phenotypic and genotypic methods

Cattini, Alexander Peter 13 January 2017 (has links)
Brassica napus L. is an economically important oilseed species cultivated across Western Canada. Hybrid B. napus cultivars compose the majority of the market due to their seed yield and agronomic quality. It is important to attempt to predict high-yielding parental combinations in order to conserve resources during experimental hybrid evaluation. Genetic distance between parents has been implicated in producing high-yielding hybrids and is used as one criteria for determining parental combinations.In the current study, the genetic distance between high erucic acid rapeseed (HEAR) genotypes of B. napus was established using both phenotypic and genotypic criteria. Phenotypic criteria took the form of nine agronomic and seed quality traits gathered from 318 distinct B. napus genotypes over the 2013 and 2014 field seasons in Southern Manitoba. Genotypic criteria took the form of either 291,782 SNP markers identified in 231 distinct B. napus genotypes using genotyping-by-sequencing (GBS) or 230 polymorphic sequence-related amplified polymoprhism (SRAP) markers identified in 160 B. napus genotypes. The genetic distance between available pollinators and a single male-sterile female was established using each set of criteria in an attempt to correlate genetic distance with hybrid yield. Regression analysis was conducted with yield data from hybrid genotypes gathered from 37 field sites from 2011-2014. Using the phenotypic-derived genetic distance, a significant correlation between genetic distance and hybrid yield was uncovered explaining either 22 % or 42 % of the variation in hybrid yield depending upon whether hybrids were grown at three or more, or five or more sites in the analysis, respectively. No significant link was found between GBS or SRAP-derived genetic distance and hybrid yield. These results provide evidence that that phenotypic criteria can be used to establish genetic distance with utility in the selection of high-yielding hybrid genotypes. / February 2017
157

Black mustard and the butterfly effect : metabolomics of plant-insect interactions under multiple stress conditions

Papazian, Stefano January 2017 (has links)
One main goal of ecological research is to understand nature´s complexity, in order to predict the potential impact of environmental perturbations. In this thesis, I investigate the ecological interactions between some of the most ancient organisms living on our planet: plants and insects. Focus of my research is the interaction between the wild brassicaceous plant black mustard (Brassica nigra L.) and its specialist insect herbivore, the large white cabbage butterfly (Pieris brassicae L). Both organisms are well characterized model species used in chemical ecology research. Using different analytical techniques, such as liquid and gas chromatography coupled to mass-spectrometry (LC- and GC-MS) and headspace collection of volatile organic compounds (VOCs), I apply the approach of metabolomics and systems biology to the field of ecology to explore the metabolic changes occurring inside the plants exposed to biotic and abiotic stresses. Particularly, I study the plant metabolic responses against P. brassicae chewing caterpillars during sequential treatment exposure to: abiotic stress by the oxidative air pollutant ozone (O3); dual herbivory with specialist Brevicoryne brassicae piercing-sucking aphids; and chemical induction of plant defences with the oxylipin phytohormone methyl-jasmonate (MeJA). Results show how during herbivore-induced responses, changes in defence- and growth-metabolic processes are tightly connected to stress protection mechanisms, indicating that plants actively reprogram their inner metabolic networks in order to adapt to consecutive changes in the environment. This thesis illustrates how evaluating the plant metabolome in its entirety rather than single metabolites, can help us understanding plant responses towards abiotic and biotic stresses, and improve our ability to predict how constant shifts in the environment affect plant physiology and ecology. / Ett huvudsyfte för ekologisk forskning är att förstå naturens komplexitet för att kunna förutse effekter av störningar i miljön. I min avhandling har jag fokuserat på ekologiska interaktioner mellan växter och insekter, två av de äldsta terrestra organismgrupperna på jorden. I mina studier har jag undersökt interaktioner mellan den korsblommiga växten svartsenap (Brassica nigra L.) och den specifika herbivoren kålfjäril (Pieris brassicae L.). Båda är väl karaktäriserade modellarter i kemisk-ekologisk forskning. De metaboliska förändringar som sker när växten utsätts för biotisk och abiotisk stress har analyserats hjälp av metabolomik, det vill säga analyser av metabolomet i sin helhet med hjälp av tekniker som vätske- och gaskromatografi kopplad till masspektrometri (LC- och GC-MS), och så kallad headspace-uppsamling av flyktiga organiska föreningar (VOCs). Jag har särskilt undersökt de metaboliska förändringar som sker när växten betas av kålfjärilslarver vid samtidig exponering för: abiotisk stress i form av ozon (O3), en oxidativ luftförorening; ytterligare betning i form av stickande och sugande bladlus (Brevicoryne brassicae); tillsats av oxylipinfytohormon metyl-jasmonat (MeJA), ett ämne som inducerar växtens försvar. Resultaten visar att de metaboliska förändringar som sker i växten vid herbivori med konsekvenser för dess försvar och tillväxt är nära kopplade till de metaboliska förändringar som sker vid stress, vilket visar att växten kan fortlöpande och aktivt omprogrammera sina metaboliska nätverk för att anpassa sig till förändringar i miljön. Avhandlingen visar att genom att utvärdera växtmetabolomet i sin helhet, snarare än att studera enskilda metaboliter, vi kan få bättre förståelse för hur växter reagerar på olika former av stress och därmed också bidra till att vi kan göra förutsägelser för hur förändringar i miljön kan påverka växters fysiologi och ekologi.
158

Quantitative Trait Loci Controlling Sclerotinia Stem Rot Resistance and Seed Glucosinolate Content of Oilseed Rape (Brassica napus L.)

Liu, Jun January 2016 (has links)
Canola/rapeseed (Brassica napus L.) is a major oilseed crop worldwide. However, its production is largely affected by the fungal disease Sclerotinia stem rot as well as seed glucosinolates. So far the genetic mechanisms controlling these two traits have been poorly understood. In the present study, three bi-parental doubled haploid B. napus populations M730, M692 and ZT were grown in either natural or artificial environments and genotyped using the Brassica 60K Infinium® SNPs and/or sequence related amplified polymorphisms. Three genetic linkage maps covered 2,597.7 cM, 2,474.1 cM and 1,731.6 cM in 19 chromosomes for M730, M692 and ZT, respectively. Plants were inoculated with Sclerotinia sclerotiorum mycelia on stems at the reproductive stage to evaluate their resistivity. Four aliphatic glucosinolates and one indolic glucosinolate were detected in the seeds using high-performance liquid chromatography. 4-hydroxy-3-indolylmethyl predominated over aliphatic glucosinolates in canola, but inversely constituted a small portion of total glucosinolate content in semi-winter rapeseed. In rapeseed, 2-hydroxy-3-butenyl predominated in 4C aliphatic glucosinolates, which in turn predominated in total aliphatic glucosinolates, which likewise predominated in total glucosinolate content. QTLs regulating major glucosinolates were located on chromosome A9 for high glucosinolate content populations M730 and ZT, and on chromosome C7 for low glucosinolate content population M692. Major QTLs for Sclerotinia stem rot resistance were located on chromosomes A7 and C6 in M730, on chromosomes A3 and A7 in ZT, while no major QTLs were found in M692. Additive genetic effect was the major factor explaining phenotypic variations of the two traits. No direct genetic relationship was observed between Sclerotinia stem rot resistance in adult plants and seed glucosinolates in B. napus. The findings in the studies could be used to formulate breeding and research strategies in B. napus and the major QTLs controlling the two traits and their closely linked SNP markers could be validated over wide germplasm and used in marker assisted selection. / October 2016
159

The potential of using the BnLEC1 and BnFUSCA3 genes to manipulate oil content in Brassica napus L.

Elahi, Nosheen 05 1900 (has links)
Due to the immense utilization in food and industry, there is enormous commercial and scientific interest to manipulate canola (Brassica napus L.) seed oil. Seed oil accretions are influenced by genes involved in embryo and seed development. FUSCA3 (FUS3) and LEAFY COTYLEDON1 (LEC1) are well-known transcription factors involved during seed and embryo development. The main objective of this project was to evaluate the role of these genes during seed storage deposition and microspore-derived embryogenesis in B. napus. For this purpose, six BnLEC1 transgenic lines and three BnFUS3 TILLING mutant lines were generated. The over expression of BnLEC1 significantly increased the seed oil content, while the down regulation of BnLEC1 or mutation of BnFUS3 reduced the level of seed oil. Experimental alterations of BnLEC1 and BnFUS3 triggered transcriptional modifications in enzymes taking part in sucrose transport and metabolism, glycolysis, and fatty acid (FA) biosynthesis. These changes are suggestive of a greater carbon pool to FA biosynthesis in tissues over-expressing BnLEC1, and a reduced carbon flux available for the synthesis of FA in BnLEC1 down regulators and BnFUS3 tilling mutants. While the elevated oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value, or glucosinolate (GLS) levels, suppression of BnLEC1 reduced seed oil accumulation and raised levels of GLS, possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. BnFUS3 tilling mutant seeds had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). The effects of altered expression of BnLEC1 and BnFUS3 were also assessed during microspore-derived embryogenesis. Substantial structural abnormalities, accompanied by changes in transcript levels of several embryo marker genes were observed in embryos in which the expression of BnLEC1 or BnFUS3 was altered. The changes in oil level and FA profiles observed in the transformed microspore-derived embryos followed a similar trend to that described in seeds. Collectively, these observations suggest that manipulation of BnLEC1 and BnFUS3 can be employed as a tool to enhance seed oil production and quality in B. napus. / February 2017
160

Swede Midge, Contarinia Nasturtii (diptera: Cecidomyiidae), Response To Brassica Oleracea In Simulated Intercropping Systems

Brion, Gemelle Laureen 01 January 2015 (has links)
Monoculture agriculture has developed as a result of the Western agricultural growth model, which emphasizes reduced on-farm labor and maximum yield. As a result soil health, which is reliant on a diversity of soil-dwelling organisms, is compromised, pest problems are intensified, and biodiversity is lost when vast land areas are devoted to simplified vegetation schemes. There has been a tremendous rise in interest in alternative cropping schemes. The traditional practice of intercropping has received renewed interest as the emphasis on agricultural growth shifts from a purely development-based model to one of conservation and enhanced biodiversity. Although intercropping has shown promising results in controlling specialist herbivorous insects, how intercropping works is not known. Theories that explain the underlying mechanism of intercropping success include chemical repellency and physical masking. We tested these two theories by creating a simulated intercropping system in mesocosm cages in a laboratory environment. We tested twenty intercrops that varied in their vegetation type, size, and phylogenetic distance for their ability to repel an insect pest that recently invaded into North America, the swede midge (Contarinia nasturtii), from its host plant, Brassica oleracea. We found that different non-host plant treatments significantly influenced larval abundance, which indicates that C. nasturtii responded to some aspect of the varying plant combinations. We found that phylogenetic distance did not influence larval densities. Additionally, non-host plant height and leaf area of non-host plants did not influence larval densities. We found that vegetation type significantly affected larval densities. Brassica oleracea planted in combination with groundcover non-host plants had the fewest number of larvae, followed by B. oleracea planted in combination with vegetables. The highest number of larvae was found on B. oleracea plants planted in combination with herb non-host plants. Our research did not support a chemical repellency or visual masking theory of intercrop success.

Page generated in 0.0753 seconds