• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 4
  • 1
  • 1
  • Tagged with
  • 67
  • 56
  • 56
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Regulatory Factors that Reveal Three Distinct Adipocytes : The Brown, the White and the Brite

Waldén, Tomas B January 2010 (has links)
Adipose tissues have long been considered to derive from a common origin. Even the functionally different brown and white adipose tissues were generalized to share a common origin. Brown adipose tissue is a highly innervated and vascularised tissue containing multilocular and multimitochondrial brown adipocytes. Brown adipose tissue expends energy through sympathetic nervous system-mediated non-shivering thermogenesis, where uncoupling protein 1 (UCP1) is the key player. In contrast, white adipose tissue consists of unilocular white adipocytes with a main role to store energy in the form of the lipid droplet. We know today that this generalisation is exaggerated since adipocytes can derive from more than one origin and not only be brown or white. We and others have demonstrated that the brown adipocyte has a dermomyotomal origin and derives from the adipomyocyte, the precursor cell that can also become a myocyte, whereas white adipocytes are suggested to derive from pericytes, cells that are embedded within the vascular vessel walls. For a long time there has been evidence that energy-expending adipocytes reside within certain white adipose tissues, based on the fact that cold exposure, by switching on the sympathetic nervous system, leads to levels of UCP1 that are not detectable in mice housed at thermoneutrality. We demonstrated that these cells have a molecular signature that is distinct from brown and white adipocytes. Since these energy-expending cells reside within certain white adipose tissues, we chose to name them brite (brown in white) adipocytes. Moreover, we also identified regulatory factors that were specifically expressed in each adipocyte type, thus, facilitating the possibility to identify the three adipocytes: the brown, the white and the brite. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.
62

Effet des acides gras polyinsaturés sur la conversion des adipocytes blancs en adipocytes brites / Effects of polyinsaturated fatty acid on the conversion of white adipocytes into brite adipocytes

Ghandour, Rayane 06 April 2016 (has links)
Il existe deux populations d’adipocytes thermogéniques, les adipocytes bruns du tissu adipeux bruns et les adipocytes ‘’brites’’ qui apparaissent au sein du tissu adipeux blanc. Récemment, la caractérisation d’adipocytes bruns et brites fonctionnels chez l’homme adulte a permis d’envisager de nouvelles approches nutritionnelles et thérapeutiques pour traiter l’obésité. Mon projet de thèse a porté sur l’étude des effets des acides gras polyinsaturés ω6 et ω3 d’origine alimentaire sur la conversion des adipocytes blancs en brites, d’abord chez l’homme in vitro puis chez les rongeurs in vivo. Nous avons pu ainsi démontrer que l'acide arachidonique ω6 à l’origine de nombreux métabolites oxygénés, exerce 1) un effet inhibiteur sur la formation des adipocytes brites grâce aux prostaglandines E2 et F2α, et 2) un effet inducteur via la prostacycline. En effet, celle-ci active la conversion des adipocytes blancs en brites par une voie impliquant le récepteur membranaire IP et les récepteurs nucléaires PPARs. En nous basant sur les recommandations nutritionnelles actuelles chez l’Homme, qui ont pris en considération l’insuffisance de l’apport en acides garsω3 par rapport à l’excès des ω6, nous avons pu montrer chez la souris qu’une supplémentation en acides gras ω3 dans le régime alimentaire était capable d’inhiber l’effet néfaste des acides gras ω6 et d’activer le tissu adipeux brun. Nos résultats démontrent l’importance de la biodisponibilité de l’acide arachidonique dans la biologie du tissu adipeux et permettent de renforcer l’idée que le rééquilibrage du ratio ω6/ω3 est un outil de choix dans la prévention du surpoids et de l’obésité et les maladies métaboliques associées / There are two types of thermogenic adipocytes able to use fatty acids and glucose to produce heat. We distinguish brown adipocytes from the brown adipose tissue and ‘’brite’’ adipocytes which occur into the white adipose tissue. Recently, the characterization of functional brown and brite adipocytes in adult humans has led to the consideration of their use to treat obesity by increasing energy expenditure. My thesis project was to study the effect of dietary polyunsaturated fatty acids, on the conversion of white into brite adipocytes, in vitro and in vivo, in humans and rodents respectively. We demonstrated that arachidonic acid ω6, precursor of prostaglandins, has 1) an inhibitory effect on the recruitment of brite adipocytes via prostaglandins E2 and F2α and 2) an activatory effect via prostacyclin. In fact, prostacyclin induces the conversion of white into brite adipocytes through the IP receptor and the PPARs signaling pathways. Based on human present nutritional recommendations, we demonstrated that a supplementation of ω3 fatty acids in mice diet was able to inhibit the negative effect of ω6 fatty acids and activate brown adipose tissue. Our data highlights the importance of arachidonic acid bioavailability on the biology of adipose tissue and reinforce the idea that an equilibrate ω6/ω3 ratio is a tool that can be used to prevent overweight obesity and associated metabolic disorders
63

Performance of the BRITE Prototype Photometer Under Real Sky Conditions

Bode, Willem January 2011 (has links)
Wide-field photometry is prone to various degradations, such as atmospheric ex- tinction, varying point spread functions, and aliasing in addition to classical noise sources such as photon, sky background, readout, and thermal noise. While space- borne observations do not suer from atmospheric eects, varying star images over a large sensor and aliasing may seriously impede good results. A measure of the achievable precision of ground-based dierential photometry with the prototype photometer for the BRITE satellite mission is reported, using real sky observa- tions. The data were obtained with the photometer attached to a paramount tracking platform, using the Image Reduction and Analysis Facility Software (IRAF) image reduction and analysis methods as well as the author's own Matlab Code. Special emphasis is placed on the analysis of varying apertures for vary- ing point spread functions, which shows that the accuracy can be improved by taking into account the statistics for each star instead of using a xed aperture. In addition a function is dened, which describes the expected error in terms of instrumental magnitudes, taking into account Poisson distributed noise and mag- nitude independent noise, mainly aliasing. This function is then t to observed data in a two-dimensional least squares sense, providing a calculated aliasing error of 7 millimagnitudes. This function is furthermore rewritten in terms of the stan- dard magnitude B. A maximum magnitude can then be determined for a certain precision, which shows that the Bright Target Explorer (BRITE) can reach a pho- tometric error of 1 millimagnitude for stars with magnitude B &lt; 3:5, assuming the worst case duty cycle of 15 minutes. / <p>Validerat; 20110211 (anonymous)</p>
64

Role of Tyk2 in the Development of Beige Cells

Umali, Samantha 19 July 2011 (has links)
Obesity results from an excess of adipose tissue and is a major risk factor for type 2 diabetes, cardiovascular disease, and cancer. Adipose tissue exists in two main forms: white adipose tissue (WAT), which stores energy as triglycerides, and brown adipose tissue (BAT), which dissipates stored energy as heat. White adipose tissue is composed of several subcutaneous and visceral depots, each possessing distinct molecular and functional characteristics. Brown-like adipocytes can emerge in WAT depots in response to cold or beta-adrenergic stimulation. These cells have been called “beige” or “brite” (brown-in-white) cells. The reduction of obesity in mice treated with beta-adrenergic agonists is correlated with the emergence of beige cells. Beige cell development occurs most readily in subcutaneous depots, and to the least extent in visceral depots. Understanding the molecular mechanisms underlying beige cell development in different WAT depots may be important in discovering new therapies against obesity and related diseases. Our lab has previously discovered that Tyrosine Kinase 2 (Tyk2), an important mediator of cytokine signaling, promotes the development of classical brown adipose tissue. Due to the lack of functional BAT, Tyk2-knockout (Tyk2-/-) mice become grossly obese with age and develop several symptoms of the metabolic syndrome. In the present study, we have found a potential role of Tyk2 in the development of beige cells. Here, we show that mRNA expression of BAT-selective genes (UCP1, Cidea, Cox8b, and Elovl3) is significantly reduced in subcutaneous WAT of Tyk2-knockout (Tyk2-/-) mice compared to wild-type mice. Surprisingly, BAT-selective genes are induced in Tyk2-/- subcutaneous WAT by acute starvation. These findings suggest that Tyk2 is required for the development of beige cells under ambient conditions, and that the need for Tyk2 in beige cell development is bypassed during nutritional stress, a stimulus of the sympathetic response.
65

Assembly, Integration, and Test of the Instrument for Space Astronomy Used On-board the Bright Target Explorer Constellation of Nanosatellites

Cheng, Chun-Ting 25 July 2012 (has links)
The BRIght Target Explorer (BRITE) constellation is revolutionary in the sense that the same scientific objectives can be achieved smaller (cm3 versus m3 ) and lighter (< 10kg versus 1, 000kg). It is a space astronomy mission, observing the variations in the apparent brightness of stars. The work presented herein focuses on the assembly, integration and test of the instrument used on-board six nanosatellites that form the constellation. The instrument is composed of an optical telescope equipped with a Charge Coupled Device (CCD) imager and a dedicated computer. This thesis provides a particular in-depth look into the inner workings of CCD. Methods used to characterize the instrument CCD in terms of its bias level stability, gain factor determination, saturation, dark current and readout noise level evaluation are provided. These methodologies are not limited to CCDs and they provide the basis for anyone who wishes to characterize any type of imager for scientic applications.
66

Assembly, Integration, and Test of the Instrument for Space Astronomy Used On-board the Bright Target Explorer Constellation of Nanosatellites

Cheng, Chun-Ting 25 July 2012 (has links)
The BRIght Target Explorer (BRITE) constellation is revolutionary in the sense that the same scientific objectives can be achieved smaller (cm3 versus m3 ) and lighter (< 10kg versus 1, 000kg). It is a space astronomy mission, observing the variations in the apparent brightness of stars. The work presented herein focuses on the assembly, integration and test of the instrument used on-board six nanosatellites that form the constellation. The instrument is composed of an optical telescope equipped with a Charge Coupled Device (CCD) imager and a dedicated computer. This thesis provides a particular in-depth look into the inner workings of CCD. Methods used to characterize the instrument CCD in terms of its bias level stability, gain factor determination, saturation, dark current and readout noise level evaluation are provided. These methodologies are not limited to CCDs and they provide the basis for anyone who wishes to characterize any type of imager for scientic applications.
67

The Origin of Human White, Brown, and Brite/Beige Adipocytes

Min, So Yun 16 December 2016 (has links)
During embryonic development, adipocytes emerge from microvasculature. Lineage-­‐tracing studies in mice have shown that adipocyte progenitors reside in the adipose tissue capillaries. However, the direct evidence of an association between adipocyte progenitors and vasculature in humans is lacking. A specific class of adipocytes (brown and beige/brite) expresses the uncoupling protein 1 (UCP1), which consumes glucose and fatty acids to generate heat. The abundance of UCP1- containing adipocytes correlates with a lean metabolically healthy phenotype in human. However, a causal relationship between the presence of these cells and metabolic benefits in human is not clear. In this thesis, I report human adipocyte progenitors proliferate in response to pro-angiogenic factors in association with adipose capillary networks in-vitro. The capillary-derived adipocytes transform from being UCP1-negative to positive upon adenylate cyclase activation, a defining feature of the brite/beige phenotype. Activated cells have denser, round mitochondria with UCP1 protein, and display uncoupled respiration. When implanted into NOD-scid IL2rgnull (NSG) mice, the adipocytes can form a vascularized fat pad that induces vascularization and becomes integrated into mouse circulatory system. In normal or high fat diet-fed NSG mice, activated brite/beige adipocytes enhance systemic glucose tolerance and improved hepatic steatosis, thus providing evidence for their potential therapeutic use. The adipocytes also express neuroendocrine and secretory factors such as Interleukin-33, proprotein convertase PCSK1 and proenkephalin PENK, which are correlated with human obesity. Finally, analyses on single-cell clones of capillary-sprout cells reveal the existence of diverse adipogenic progenitor populations. Further characterization of the clones will define the identifying features of the diverse adipocyte progenitor types that exist in human adipose tissue.

Page generated in 0.0548 seconds