Spelling suggestions: "subject:"backstepping control"" "subject:"backstepping coontrol""
1 |
Design of the Robust Backstepping Controllers for Synchronous GeneratorsKuo, Yu-feng 08 February 2010 (has links)
In this thesis a robust nonlinear tracking is proposed for a class of single machine connected to an infinite bus (SMIB) systems. Designing of the controller is based on the backstepping control technique, where designer interlaces the choice of L yapunov functions in order to design the controller and analyze the stability of the power angle and rotating speed of the generator. Nonlinear models are considered directly in the designing process, hence neglecting the effects of nonlinear terms in the plant can be avoided, which may also improve the robustness of controlled system¡¦s transient stability. In order to enhance the applicability of the proposed control scheme, the perturbations that may encountered in the system are considered, and adaptive laws are embedded in the controllers so that the upper bound of perturbations need not to be known beforehand. Two numerical examples are given to illustrate the feasibility of the proposed control scheme.
|
2 |
Design of Adaptive Backstepping Tracking Controllers for a Class of Mismatched Perturbed Chaotic Synchronization SystemsWu, Yu-Hung 19 January 2008 (has links)
In this thesis the synchronization of two different chaotic systems with matched and mismatched perturbations are developed by utilizing adaptive backstepping control technique. The adaptive mechanisms embeded in the proposed control scheme is used to adapt the unknown upper bounds of the perturbations. The resultant robust backstepping tracking controller with adaptive mechanisms can indeed drive the trajectories of the slave system to track those of the master system. Two numerical examples and simulations are given to illustrate the correctness of theoretical analyses.
|
3 |
Remote-controlled ambidextrous robot hand actuated by pneumatic muscles : from feasibility study to design and control algorithmsAkyürek, Emre January 2015 (has links)
This thesis relates to the development of the Ambidextrous Robot Hand engineered in Brunel University. Assigned to a robotic hand, the ambidextrous feature means that two different behaviours are accessible from a single robot hand, because of its fingers architecture which permits them to bend in both ways. On one hand, the robotic device can therefore behave as a right hand whereas, on another hand, it can behave as a left hand. The main contribution of this project is its ambidextrous feature, totally unique in robotics area. Moreover, the Ambidextrous Robot Hand is actuated by pneumatic artificial muscles (PAMs), which are not commonly used to drive robot hands. The type of the actuators consequently adds more originality to the project. The primary challenge is to reach an ambidextrous behaviour using PAMs designed to actuate non-ambidextrous robot hands. Thus, a feasibility study is carried out for this purpose. Investigating a number of mechanical possibilities, an ambidextrous design is reached with features almost identical for its right and left sides. A testbench is thereafter designed to investigate this possibility even further to design ambidextrous fingers using 3D printing and an asymmetrical tendons routing engineered to reduce the number of actuators. The Ambidextrous Robot Hand is connected to a remote control interface accessible from its website, which provides video streaming as feedback, to be eventually used as an online rehabilitation device. The secondary main challenge is to implement control algorithms on a robot hand with a range twice larger than others, with an asymmetrical tendons routing and actuated by nonlinear actuators. A number of control algorithms are therefore investigated to interact with the angular displacement of the fingers and the grasping abilities of the hand. Several solutions are found out, notably the implementations of a phasing plane switch control and a sliding-mode control, both specific to the architecture of the Ambidextrous Robot Hand. The implementation of these two algorithms on a robotic hand actuated by PAMs is almost as innovative as the ambidextrous design of the mechanical structure itself.
|
4 |
Nonlinear Control Framework for Gimbal and Multirotor in Target TrackingLee, Jae Hun 01 March 2018 (has links)
This thesis presents some existing gimbal and UAV control algorithms as well as novel algorithms developed as the extensions of the existing ones. The existing image-based visual servoing algorithms for both gimbal and UAV require the depth information to the object of interest. The depth information is not measurable when only a monocular camera is used for tracking. This thesis is the result of contemplation to the question: how can the necessity for a depth measurement be removed? A novel gimbal algorithm using adaptive control is developed and presented with simulation and hardware results. Although the estimated depth using the algorithm cannot be used as reliable depth information, the target tracking objective is met. Also, a new UAV control algorithm for target following is developed and presented with simulation results. This algorithm does not require the depth to the target or the UAV altitude to be measured because it exploits the unit vectors to the target and to the optical axis.
|
5 |
Design of Adaptive Block Backstepping Controllers for Semi-Strict feedback Systems with DelaysHuang, Pei-Chia 19 January 2012 (has links)
In this thesis an adaptive backstepping control scheme is proposed for a class of multi-input perturbed systems with time-varying delays to solve regulation problems. The systems to be controlled contain n blocks¡¦ dynamic equations, hence n-1 virtual input controllers are designed from the first block to the (n-1)th block, and the backstepping controller is designed from the last block. In addition, adaptive mechanisms are embedded in each virtual input controllers and proposed controller, so that the least upper bounds of perturbations are not required to be known beforehand. Furthermore, the dynamic equations of the systems to be controlled need not satisfy strict-feedback form, and the upper bounds of the time delays as well as their derivatives need not to be known in advance either. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme.
|
6 |
Validation of a DC-DC Boost Circuit Model and Control AlgorithmZumberge, Jon T. 27 August 2015 (has links)
No description available.
|
7 |
Linear and Nonlinear Control of Unmanned RotorcraftRaptis, Ioannis A. 30 November 2009 (has links)
The main characteristic attribute of the rotorcraft is the use of rotary wings to produce the thrust force necessary for motion. Therefore, rotorcraft have an advantage relative to fixed wing aircraft because they do not require any relative velocity to produce aerodynamic forces. Rotorcraft have been used in a wide range of missions of civilian and military applications. Particular interest has been concentrated in applications related to search and rescue in environments that impose restrictions to human presence and interference.
The main representative of the rotorcraft family is the helicopter. Small scale helicopters retain all the flight characteristics and physical principles of their full scale counterpart. In addition, they are naturally more agile and dexterous compared to full scale helicopters. Their flight capabilities, reduced size and cost have monopolized the attention of the Unmanned Aerial Vehicles research community for the development of low cost and efficient autonomous flight platforms.
Helicopters are highly nonlinear systems with significant dynamic coupling. In general, they are considered to be much more unstable than fixed wing aircraft and constant control must be sustained at all times. The goal of this dissertation is to investigate the challenging design problem of autonomous flight controllers for small scale helicopters. A typical flight control system is composed of a mathematical algorithm that produces the appropriate command signals required to perform autonomous flight.
Modern control techniques are model based, since the controller architecture depends on the dynamic description of the system to be controlled. This principle applies to the helicopter as well, therefore, the flight control problem is tightly connected with the helicopter modeling. The helicopter dynamics can be represented by both linear and nonlinear models of ordinary differential equations. Theoretically, the validity of the linear models is restricted in a certain region around a specific operating point. Contrary, nonlinear models provide a global description of the helicopter dynamics.
This work proposes several detailed control designs based on both dynamic representations of small scale helicopters. The controller objective is for the helicopter to autonomously track predefined position (or velocity) and heading reference trajectories. The controllers performance is evaluated using X-Plane, a realistic and commercially available flight simulator.
|
8 |
Contribution à la modélisation et à la commande de robots mobiles autonomes et adaptables en milieux naturels / Contribution to the modelling and control of autonomous and adaptable mobile robots in natural environmentsDeremetz, Mathieu 06 July 2018 (has links)
Les problématiques de recherche abordées dans cette thèse concernent la conceptualisation, la modélisation et la commande générique des robots mobiles lors de leur évolution en milieux extérieurs et en présence de glissement pour des applications de suivi de précision. Ainsi, ce mémoire synthétise dans un premier temps les développements et résultats obtenus lors du suivi de trajectoire (localisation absolue), puis synthétise ensuite ceux obtenus lors de suivi de structure et de cible (localisation relative). Une dernière partie introduit un concept de plateforme robotique reconfigurable et sa commande associée pour adapter l’assiette et les dimensions du châssis en fonction de la topographie du terrain.Pour chaque application de suivi, ce mémoire présente un panel de lois de commande originales pour des robots différentiels, à un train et à deux trains directeurs. Chaque modalité de commande est présentée en quatre étapes : modélisation, estimation, commande et expérimentations. La première contribution majeure de la thèse concerne l’estimation du glissement. Cette dernière est adaptative et basée modèle. Elle intègre la modélisation cinématique étendue seule ou couplée à la modélisation dynamique du robot mobile pour assurer une estimation intègre quels que soient la vitesse, les phénomènes dynamiques rencontrés et la nature du sol. La seconde contribution majeure concerne le développement d’une stratégie de commande générique pour les robots mobiles. Cette stratégie est basée sur le principe de la commande en cascade (ou par backstepping) et est déclinée dans ce mémoire à travers un panel de lois de commande. Cette méthodologie de commande, lorsqu’elle est associée à l’observation du glissement précédent, permet d’obtenir des performances de suivi accrues quel que soit le contexte rencontré. L’ensemble des algorithmes ont été validés en simulation et/ou expérimentalement à l’aide de différentes plateformes robotiques en contextes réels. / This work is focused on the conceptualization, the modeling and the genericcontrol of mobile robots when moving in off-road contexts and facing slipperyterrains, especially for very accurate tracking and following applications. Thisthesis summarizes the proposed methods and the obtained results to addressthis research issue, first for path following applications (absolute localization)and then for edge and target tracking applications (relative localization). A finalsection of this thesis introduces an adaptive robotic concept and its associatedcontroller allowing the adaptation of the pose (position and orientation) of thechassis with respect to the environment topography.For each application, this thesis introduces a panel of innovative control algorithmsfor controlling skid-steering, two-wheel steering and four-wheel steeringmobile robots. Each algorithm of the panel is described, in this thesis, infour steps : modeling, estimation, control and experiments.The first main contribution of this thesis deals with the slippage estimation.The latter is adaptive and model-based. It also includes the extended kinematicmodeling only or together with the dynamic modeling of the mobile robot toensure a robust estimation of the slippage whatever the speed of the robot, encountereddynamic phenomena or even ground characteristics.The second main contribution deals with the design of a generic control approachfor mobile robots when path following and target tracking. The proposedstrategy is mostly based on a backstepping method and is illustrated inthis thesis via a panel of control laws. When combining this proposed controlapproach with the slippage estimation described above, significant improvedtracking and following performances are obtained (in term of stability, repeatability,accuracy and robustness) whatever the encountered context.All algorithms have been tested and validated through simulations and/orfull-scale experiments, indoor and off-road, with different mobile robots.
|
9 |
CONTROLE NÃO LINEAR DE UM PRÃ-REGULADOR ISOLADO COM PFC E ACOPLAMENTO AUXILIAR / âNonlinear control of a high frequency isolated pre-regulator with PFC and auxiliary couplingEduardo Lenz Cesar 05 August 2011 (has links)
Este trabalho propÃe o estudo de uma nova topologia, com dois estÃgios, de um conversor
estÃtico, onde existe um fluxo de potÃncia auxiliar com o objetivo de aumentar o
rendimento do sistema. O primeiro estÃgio à um conversor CA-CC com correÃÃo do
fator de potÃncia (PFC) e o segundo estÃgio à um conversor CC-CC isolado em alta
frequÃncia.
Os dois estÃgios do conversor proposto sÃo modelados por equaÃÃes diferenciais e atravÃs
desses modelos sÃo desenvolvidas tÃcnicas de controle nÃo linear para o funcionamento
dos conversores em malha fechada.
A correÃÃo do fator de potÃncia do primeiro estÃgio à realizada pela tÃcnica de controle
PBC (passivity-based control), enquanto que a tensÃo de saÃda do primeiro estÃgio Ã
realizada pelo controle I&I (immersion and invariance).
O segundo estÃgio necessita controlar somente a tensÃo de saÃda atravÃs do controle
backstepping, por se tratar de um conversor CC-CC. / This work proposes a study of a new static converter topology with two stages, where
the first is an AC-DC converter with PFC and the second is a DC-DC converter isolated
in high-frequency. In addition, the static converter has a secondary power flow to
achieve a better efficiency from the system.
The two converterâs stages are modeled as differential equations, and through those
models nonlinear control techniques are developed for close loop operation.
The power-factor correction in the first stage is performed by the PBC (passivity-based
control) control technique, while the output voltage from the first stage is performed
by the I&I (immersion and invariance) control.
As the second stage is a DC-DC converter, it only needs to control the output voltage,
which is achieved through the backstepping control.
|
10 |
Development of theoretical and computational tools for the design of control strategies for nonlinear sampled-data systemsTanasa, Valentin 23 November 2012 (has links) (PDF)
This thesis is concerned with the sampled-data control of non-linear continuous-time systems. Sampled-data systems are present in all computer controlled, hybrid or embedded systems. The design and computation of suitable digital controllers represent unavoidable tasks since both continuous and discrete-time components interact. The basic framework of this work takes part of a wide research activity performed by S. Monaco and D. Normand-Cyrot regarding non-linear sampled-data systems. The underlying idea is to design digital controllers that recover certain continuous-time properties that are usually degraded through sampling as it is the case when continuous-time controllers are implemented by means of zero-order holder devices (emulated control). This thesis brings contributions into three different directions. The first one regards theoretical developments: a new digital backstepping-like strategy design for strict-feedback systems is proposed. This method is compared with other strategies proposed in the literature. The second contribution is the development of a control designer and of a simulation toolbox (in Matlab) for non-linear sampled-data systems. This toolbox includes different digital design strategies such as: multi-rate control, input-output/Lyapunov matching, digital backstepping design, etc. The third contribution concerns several case studies conducted to highlight the performances of the sampled-data controller designs, computed by the means of the software toolbox. Experimental and simulation results are described for various real examples especially in the area of electrical and mechanical processes.
|
Page generated in 0.3618 seconds