• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 17
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 19
  • 16
  • 15
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

La diversité bactérienne dans les sols de surface de San Rafael Swell (Utah, USA) et le Desert de Maine (USA) / The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA)

Wang, Yang 23 November 2015 (has links)
Les zones arides couvrent environ un tiers de la surface terrestre de la planète. Des études visant à comprendre la dispersion microbienne dans les déserts ont été réalisées. En effet, les communautés microbiennes du sable des déserts peuvent jouer un rôle important dans la stabilité des sols. Le pyroséquençage pour les ARNr 16S à partir de l’ADN total extrait des sols des échantillons de sable peut donner des renseignements clés sur la structure des communautés bactériennes qui les composent. Dans cette étude, la diversité et la structure des communautés bactériennes de la surface du sol des déserts des l'États de l'Utah et du Maine ont été mises en évidence. Nous avons mise en œuvre une procédure permettant l'analyse des séquences de l’ADNr 16S en combinant des outils préexistants dédiés à la métagénomique. Ainsi, des corrélations entre certains facteurs environnementaux et la diversité bactérienne dans les deux déserts, ont pu être établis.Le désert du Maine situé dans le nord-est Etats-Unis est une étendue de boue glaciaire, entourée par une forêt de pins. Le sol de ce désert possède les caractéristiques d’on sable avec de très faibles capacités de rétention d'eau, d’une rétention des éléments nutritifs, ainsi qu’une valeur de pH relativement faible (pH 5,09). Les échantillons provenant de ce site présentent donc des propriétés particulièrement intéressantes à étudier en lieu avec la diversité bactérienne. Deux échantillons de sable de la surface du désert du Maine ont été obtenus, et le pyroséquençage des gènes d'ADNr 16S obtenus après amplification par PCR à partir de l'ADN total extrait a été utilisé pour évaluer la diversité bactérienne, la structure de la communauté bactérienne et l'abondance relative des principaux taxons. Nous avons observé que les échantillons de sol provenant du désert du Maine présentent une diversité bactérienne singulière, avec une prédominance de Proteobacteria et Actinobacteria. Les bactéries du genre le plus abondant, Acidiphilium, représentent 12,5% du total des séquences d'ADNr 16S. Au total, 1 394 OTU ont été comptabilisées. En comparant les résultats de notre population bactérienne avec des études portant sur des sols avec caractéristiques similaires, nous avons constaté que les échantillons du Maine contiennent une faible diversité du phylum Acidobacteria que les sols acides des certains forêts, et moins de Firmicutes ainsi que plus de Proteobacteria que les sols des déserts oligotrophes.Le Désert de l'Utah présente des caractéristiques géographiques qui ressemblent à Mars. En effet il est caractérisé par la présence de collines de couleur rouge et de sols constitués de grès. Les sites d'échantillonnage couvrent le Gobblin Valley State Park et autour, notamment sur le plateau du Colorado. Avec des approches similaires à ceux utilisés pour le désert du Maine, des corrélations entre facteurs environnementaux (paramètres physico-chimiques) et diversité de structure des communautés bactériennes obtenus, ont été étudiés. Les phylums prédominants sont les Proteobacteria, Actinobacteria, Bacteroidetes et Gemmatimonadetes. Les genres les plus abondants dans nos échantillons sont Cesiribacter, Lysobacter, Adhaeribacter, Microvirga et Pontibacter. Mais de façon notable, il semble que l'abondance relative des Alphaproteobacteria et des Gemmatimonadetes est significativement corrélée aux certains facteurs environnementaux des sols, par exemple de pH et des concentration des matières organiques. / Aridity is the dominant climatic factor over approximately 30% of the land surface of the world. Research concerning microbial populations in two U.S. deserts has been performed to determine the diversity of these bacteria. Pyrosequencing-based profiling of 16S rRNA amplicons from surface soils of sand samples can provide key insights into the structure of bacterial communities and their diversity. In this study, we demonstrated the bacterial diversity and community structures of surface soil in the Corolado Plateau in the Utah State and the Desert of Maine using pyrosequencing of 16S rRNA amplicons. We built our pipeline for the analysis of 16S rRNA pyrosequencing data by combining several existing tools of metagenomics. We also examined correlations between certain environmental factors and bacterial diversity in the two deserts.The Desert of Maine is a tract of glacial silt, surrounded by a pine forest, in the state of Maine located in the northeastern USA. The soil of the Desert of Maine has a sandy texture with poor water holding abilities, nutrient retention capabilities and a relatively low pH value (pH 5.09). Samples from this site thus present an interesting place to examine the bacterial diversity in mineral sandy loam soils with an acidic pH and low concentrations of organic materials. Two surface sand samples from the Desert of Maine were obtained, and pyrosequencing of PCR amplified 16S rDNA genes from total extracted DNA was used to assess bacterial diversity, community structure and the relative abundance of major bacterial taxa. We found that the soil samples from the Desert of Maine showed high levels of bacterial diversity, with a predominance of members belonging to the Proteobacteria and Actinobacteria phyla. Bacteria from the most abundant genus, Acidiphilium, represent 12.5% of the total 16S rDNA sequences. In total, 1394 OTUs were observed in the two samples, with the number of common OTUs observed in both samples being 668. By comparing our bacterial population results with studies on related soil environments, we found that the samples contained less Acidobacteria than soils from acid soil forests, and less Firmicutes plus more Proteobacteria than soils from oligotrophic deserts.Deserts in Utah has geographic features that resemble Mars, characterized by red-colored hills, soils and sandstones. Our sample sites cover the Goblin Valley State Park and nearby regions on the Colorado Plateau. We also examined physicochemical parameters of soil from the sample sites to investigate correlations between bacterial community structure and environmental drivers. The predominant phyla of the samples represent members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The most abundant genera in our samples are Cesiribacter, Lysobacter, Adhaeribacter, Microvirga and Pontibacter. We found that the relative abundance of Alphaproteobacteria and Gemmatimonadetes are significantly correlated to some environmental factors of soils, such as pH and concentration of organic matters.
12

Bacterial community dynamics during lignocellulose decomposition as affected by soil and residue types

Michel, Himaya Mula 30 April 2011 (has links)
This study was conducted to determine dynamics of bacterial communities during decomposition and to find out whether the occurrence of bacterial communities was affected by soil and residue types. It was hypothesized that there would be a shift in bacterial community structure during decomposition. Also, distinct microbial communities in different two soils associated with two residues would result in colonization by different microbial taxa. The first hypothesis was based on expected changes in the composition of decomposing residues. The second hypothesis was based on the fact that soil microbial diversity is soil-specific and immense with numerous different functionally redundant but phylogeneticaly different microbial types. Residues with different chemical properties were also expected to affect bacterial community composition, however, its impact would be lesser compared to soil. A 2 x 2 x 4 factorial experiment was conducted consisting of switchgrass (Panicum virgatum) and rice (Oryza sativa) straw; 2 soil types (Sharkey and Marietta series); and 4 incubation periods (3, 23, 48 and 110 days). Clone libraries of the bacterial communities were constructed from the detritusphere (residues and adhering soil). Non-metric multidimensional scaling of the detritusphere communities showed distinct separation of the communities at day 3 which coincided with high levels of cellulase enzyme activity and reduction of soluble carbon. style='mso-spacerun:yes'> Availability of labile carbon appeared to be important in driving bacterial community succession at early stage of colonization. During the later stages of decomposition (day 23-110), bacterial communities were segregated into two groups according to soil type. Although important, this segregation was relatively small compared to the community-level similarities observed between the soils and residues. For example, 16 of the 22 most abundant OTU's, dominated by a-,b- and style='fontamily:Symbol'>g- Proteobacteria, Bacilli and Shingobacteria, were shared among all soil and residue treatments indicating that residue decomposition is carried out by few key-player taxa. These results run counter to our hypothesis and suggest that decomposition process may be mediated by certain domineering bacterial taxa which occur at the later stage of decomposition. Further research is needed to determine whether key functional ecosystem processes are dominated by only a few taxa despite taxonomically hyper-diverse soils.
13

Bacterial diversity as a biomarker of soil health

Lu, Ting 29 November 2010 (has links)
No description available.
14

Diversity of bacterioplankton and plastid SSU rRNA genes from the eastern and western continental shelves of the United States

Rapp��, Michael Stephen 21 May 1997 (has links)
The phylogenetic diversity of two continental shelf picoplankton communities was examined by analyzing SSU (16S) ribosomal RNA (rRNA) genes amplified from environmental DNA with bacterial-specific primers and the polymerase chain reaction (PCR). Picoplankton populations collected from the pycnocline (10 m) over the eastern continental shelf of the United States near Cape Hatteras, North Carolina, and surface seawater (10 m) from the western continental shelf of the United States 8 km west of Yaquina Head, Oregon, served as sources of bulk nucleic acids used in this study. A total of 285 SSU rRNA gene clones were analyzed in the two libraries, more than doubling the number previously available from seawater samples. In contrast to previous studies of bacterioplankton diversity from the open-ocean, a large proportion of the rDNA clones recovered in this study (38%) were related to plastid SSU rRNA genes, including plastids from bacillariophyte, prymnesiophyte, cryptophyte, chrysophyte, and prasinophyte algae, as well as a number of unique plastid rRNA gene clones for which no close phylogenetic relatives were discovered. A majority of the bacterial gene clones recovered (72% of bacterial clones) were closely related to rRNA gene lineages discovered previously in clone libraries from open-ocean marine habitats, including the SAR86 cluster (�� Proteobacteria), SAR83, SAR11, and SAR116 clusters (all �� Proteobacteria), the marine Gram-positive cluster (Actinomycetes), the marine group A/SAR406 cluster, and a cluster of environmental clones within the flexibacter-cytophaga-bacteroides phylum. A majority of the remaining bacterial clones were phylogenetically related to the �� and �� subclasses of the Proteobacteria, including an rDNA lineage within the Type I methylotroph Glade of the �� subclass. The abundance of plastid rDNAs and the lack of cyanobacterial-related clones, as well as the presence of �� Proteobacteria, are features of these coastal picoplankton gene clone libraries which distinguish them from similar studies of oligotrophic open-ocean sites. Overall, however, these data indicate that a limited number of as yet uncultured bacterioplankton lineages, related to those previously observed in the open-ocean, can account for the majority of cells in these coastal marine bacterioplankton assemblages. / Graduation date: 1998
15

Bacterial Diversity of the Atacama Desert, Chile: The Challenges of Characterizing the Community Dynamics of Extreme Oligotrophic Ecosystems

Neilson, Julia Worsley January 2012 (has links)
This dissertation examines the bacterial diversity of hyperarid and arid regions of the Atacama Desert, Chile, as a first step towards understanding the global biogeochemical significance of arid-land microbial communities. The specific objectives were to characterize bacterial diversity and infer the possible metabolic potential of these bacterial communities, and to evaluate the influence of moisture exposure on community structure. In addition, the strengths and limitations of available tools for probing microbial diversity and activity in terrestrial ecosystems were characterized for their application to extreme oligotrophic communities. Preliminary PCR-DGGE analysis of a west-east elevational transect from the Pacific Ocean near Antofagasta to the western slopes of the central Andes indicated that bacterial communities along this transect belonged to two distinct community types: 1) hyperarid (700 - 2000 m) and 2) arid (2500 - 4500 m) communities that included both vegetated and unvegetated regions. Subsequent diversity analysis of these two regions revealed novel but distinct communities in both regions. A greater diversity was observed in the unvegetated arid regions than in the unvegetated hyperarid areas. The unvegetated arid sites were characterized by a bacterial community harboring a combination of radiotolerant and halotolerant heterotrophs as wells as diverse phylotypes closely related to chemolithoautotrophs. These rare phylotypes may be uniquely adapted to arid ecosystems. Molecular tools evaluated for community diversity analysis included PCR-DGGE, Sanger-clone and 454-pyrosequencing analysis of 16S rRNA gene libraries, and the use of reverse transcriptase quantitative PCR (RT-qPCR) for quantifying the impact of environmental variables on the metabolic activity of a specific organism. These techniques were evaluated using the ecosystems of the Atacama Desert as well as model ecosystems designed to address specific questions. Molecular tools are invaluable to the study of microbial ecology because they facilitate the study of fastidious organisms that are difficult or impossible to culture, but the analysis presented in this dissertation demonstrates that each of these methods has limitations and biases which must be acknowledged to avoid inaccurate conclusions from skewed results. The most complete picture of the taxonomic and functional profile of a microbial community is obtained by employing a combination of molecular techniques.
16

Interação entre cana-de-açúcar e bactérias associadas / Interaction between sugarcane and associated bacteria

Rossetto, Priscilla de Barros 30 April 2008 (has links)
Muitos fatores, como variações sazonais, tipos de tecido vegetal, cultivares e espécies de hospedeiro, tipo de solo, interação com microrganismos benéficos ou patógenos entre outros, afetam a estrutura e a composição da comunidade bacteriana das plantas. A introdução de plantas geneticamente modificadas (PGM) foi somada ao conjunto desses fatores, podendo acarretar efeitos diretos e indiretos sobre a comunidade bacteriana. Cana-de-açúcar é uma cultura de grande importância no Brasil; a área de cultivo está em expansão devido aos incentivos para a produção de álcool. Uma bactéria potencialmente importante para a cultura de cana-de-açúcar é a Methylobacterium, um importante endófito de diversas culturas de interesse econômico e que, em cana-de-açúcar, pode melhorar a germinação de sementes, promover um aumento do peso da planta e da área foliar, além do número de internódios. Dessa forma, o trabalho teve como objetivos: i) avaliar os efeitos da canade- açúcar transgênica resistente a insetos e a herbicida sobre a comunidade bacteriana associada; ii) avaliar se o suposto efeito causado pela cana-de-açúcar transgênica resistente a herbicida deriva diretamente do transgene ou dos tratos culturais diferenciados aos quais a planta transgênica é submetida; iii) avaliar a interação entre Methylobacterium spp. e cana-de-açúcar. Analisando a densidade bacteriana das plantas de cana-de-açúcar convencionais e transgênicas não foi possível constatar diferenças relacionadas à introdução dessas plantas. Analisando somente quanto ao manejo de ambos os experimentos, foi possível observar que diferenças em trato cultural ou manejo de plantas, decorrentes ou não da transgenia, podem influenciar a comunidade bacteriana. Por meio de ARDRA, foi possível observar distribuição diferenciada dos ribotipos com a introdução das PGMs. No experimento realizado somente com plantas transgênicas para resistência a Imazapyr, foi possível notar que, em 17 meses, a presença da planta transgênica e a aplicação do herbicida Imazapyr podem ter resultado na redução da densidade bacteriana associada à rizosfera de cana-de-açúcar. Por meio de DGGE, foi visto que o estado fisiológico da planta foi a maior fonte de variação. Novamente por meio de ARDRA, foram observados ribotipos cuja presença foi afetada pelo cultivo da planta transgênica. Esses ribotipos diferentemente distribuídos poderiam resultar em alterações na atividade bacteriana dessas plantas, uma vez que esses ribotipos podem representar grupos funcionais importantes. A colonização de Methylobacterium spp. em cana-de-açúcar foi analisada por meio de microscopia eletrônica de varredura, reisolamento e microscopia óptica de fluorescência. Foi visto que as linhagens utilizadas colonizam cana-de-açúcar, sendo que os pontos de maior colonização são os flanges cuticulares e as regiões pilosas da raiz. Outros estudos são necessários para o melhor aproveitamento dessa bactéria na cultura de cana-de-açúcar. / Many factors, such as seasonal variations, kinds of vegetal tissue, cultivares and host species, kind of soil, interaction with beneficial or pathogen microorganisms, among others, affect the structure and composition of plants bacterial community. The introduction of genetically modified plants (GMP) was added to the set of these factors, making it possible to cause direct and indirect effects on the bacterial community. Sugarcane is a very important crop in Brazil; the cultivation area is expanding due to incentives to alcohol production. A potentially important bacterium for sugar cane cultivation is the Methylobacterium, which is an important endophyte for several cultures of economic interest and which can improve seed germination in sugar cane, promote an increase of plant weight and foliar area, and also the internodes. Thus, the work had as objectives: i) to assess the effects of transgenic sugarcane resistant to insects and herbicide on the associated bacterial community; ii) to assess if the presumed effect caused by transgenic sugarcane resistant to herbicides derives directly from the transgene or differentiated cultural handlings to which the genetically modified plant is undertaken; iii) to assess the interaction between Methylobacterium ssp. and sugarcane. Analyzing the bacterial density of conventional and transgenic sugarcane plants it was not possible to see differences related to the introduction of these plants. Analyzing only in relation to the handling of both experiments, it was possible to see that differences in cultural wielding or handling of plants derived or not from transgenia can influence the bacterial community. By means of ARDRA, it was possible to see a differentiated distribution of ribotypes with the introduction of GMPs. In the experiment made only with transgenic plants for Imazapyr resistance, it was possible to see that in 17 months, the presence of the transgenic plant and the application of Imazapyr herbicide can bring result regarding the bacterial density reduction associated to sugarcane rizosphere. By means of DGGE, it was seen that the physiological status of the plant was the greatest variation source. Again, by means of ARDRA, ribotypes whose presence was affected by transgenic plant cultivation were observed. If distributed differently, these ribotypes can represent important functional groups. The Methylobacterium ssp. Colonization in sugarcane was analyzed and by means of scanning electronic microscopy, re-isolation, and fluorescence optical microscopy. It was observed that the utilized lineages colonize sugarcane being cuticle flange and perilous regions of root the highest colonization points. Other studies are needed to a better good use of this bacterium in sugarcane culture.
17

Caracterização da comunidade bacteriana da bacia do Rio Tietê por métodos independentes de cultivo. / Characterization of bacterial community from Tietê River Basin by cultivation independent methods.

Lima, Felipe Rezende de 29 July 2015 (has links)
O Brasil é um dos países com a maior biodiversidade do mundo, embora existam ainda poucos estudos sobre a biodiversidade microbiana dulcícola, assim, o objetivo deste trabalho foi avaliar a diversidade e estrutura das comunidades bacterianas presentes no corpo e afluentes do Rio Tietê e relacioná-las às variáveis ambientais. Foram obtidos 385 fragmentos terminais de restrição representando a temporada de estiagem em 2013 e 217 TRFs representando a temporada de cheias em 2014. As análises de Redundância (RDA) apresentaram separação entre as amostras de acordo com o período de coleta seguida da qualidade da água de origem e a temporada 2013 apresentou maior riqueza e diversidade com relação à 2014. Já a técnica de sequenciamento por MiSeq Illumina, apresentou 2.130.122 sequências com boa qualidade e o parâmetro temperatura representou a principal variável ambiental agindo sobre a riqueza das comunidades avaliadas, além disso, a localização geográfica dos rios e suas conexões representaram fatores importantes para a distribuição dos gêneros observados. / Brazil is considered one of the countries with the highest biodiversity; however, there are few studies on microbial diversity in freshwaters. Thereby, the aim of present work was to evaluate the diversity and structure of bacterial community present in Tietê river and its tributaries, for that, 28 points along Tietê River Basin were evaluated by T-RFLP and 14 points were chosen based on these results for partial sequencing of rRNA 16S gene by MiSeq Illumina. 385 Terminal Restriction Fragments were obtained for season 2013 and 217 for 2014 and Redundancy Analysis presented separation between samples according to seasons followed by water quality group separation. Season 2013 presented higher richness and diversity compared to season 2014 and high throughput sequencing presented 2.130.122 sequences with good quality. Temperature parameter represented the main environmental variable acting on the richness of assessed communities, in addition, the geographic location of the rivers and their connections were important factors for the distribution of observed genera.
18

Les impacts de la réduction de la teneur en sel sur la conservation et les écosystèmes bactériens des chipolatas / Impacts of reducing salt content on storage and bacterial ecosystem of raw pork sausages

Fougy, Lysiane 15 December 2016 (has links)
Le sel joue un rôle essentiel dans la conservation des produits de charcuterie puisqu’il inhibe le développement bactérien. Or les recommandations nutritionnelles visent à réduire les teneurs en sel dans les denrées alimentaires. Les objectifs de ce projet de thèse étaient (1) de caractériser la communauté bactérienne des chipolatas et le phénomène d’altération sous l’effet d’une réduction de sel et (2) de corréler la dégradation organoleptique des produits aux modifications de la communauté bactérienne.Nous avons tout d’abord caractérisé l’altération des chipolatas par des mesures sensorielles et physico-chimiques. Les travaux démontrent que l’intensité de l’altération est plus importante quand la teneur en sel est réduite et plus particulièrement lorsque les chipolatas sont conditionnées sous atmosphère modifiée. L’altération est caractérisée par la production d’odeurs soufrées, aigres et rances, une diminution du pH des chipolatas et une augmentation de la production d’exsudat.Parallèlement, nous avons décrit la diversité bactérienne des chipolatas altérées par analyse des ARNr 16S bactériens et l’abondance des espèces bactériennes a été quantifiée par qPCR. Par ces méthodes, nous avons pu distinguer la population dominante de la population sous-dominante. La baisse de sel entraine un déséquilibre d’abondance entre ces deux populations et ce déséquilibre résulte non pas de l’augmentation des espèces dominantes mais d’une diminution d’abondance des espèces sous-dominantes.Pour comprendre le rôle respectif de ces populations bactériennes, nous avons analysé leurs activités métaboliques par approche RNAseq. Les travaux montrent une forte activité métabolique des espèces sous-dominantes. Lorsque le sel est en plus faible concentration, l’expression des gènes de Serratia spp. impliqués dans la fermentation du pyruvate pour produire de l’éthanol, du CO2 et de l’acétate est plus importante. La production d’acétate par cette espèce bactérienne peut être reliée aux défauts d’altération observés (baisse de pH, production d’exsudat, odeur aigre).Ces travaux démontrent que le sel impacte la communauté bactérienne des chipolatas (abondance et activités métaboliques) et que cette perturbation compromet la qualité organoleptique des produits. / Salt content plays a key role in meat product preservation since it inhibits bacterial growth. However, dietary guidelines aim to reduce salt content in food. The objectives of this study were (1) to characterize the bacterial community of raw pork sausages and the spoilage phenomenon of these products under salt reduction conditions and (2) to correlate the organoleptic deterioration of the products to modifications in bacterial community.We first characterized the raw pork sausages spoilage by sensory and physicochemical analysis. The work demonstrates that spoilage intensity is greater under a reduced salt content, particularly when sausages are packaged under modified atmosphere. The spoilage is characterized by the production of sulfur, sour and rancid off-odors, a decrease in pH of the sausages and an increase of exudate production.At the same time, we described the bacterial diversity of spoiled sausages through 16S rRNA analysis. Abundance of bacterial species was quantified by qPCR. With these methods, we were able to distinguish the dominant population from the subdominant population. Reducing salt content causes an abundance imbalance between these two populations. This imbalance does not result from an increase of the dominant species; it results from a decrease in abundance of subdominant species.To understand the roles of these bacterial populations, we analyzed their metabolic activities by RNA-Seq approach. The works highlight a high metabolic activity of the subdominant species. When the salt concentration is lowest, the expression of Serratia sp. genes involved in the fermentation of pyruvate to produce ethanol, CO2 and acetate is most important. The acetate production may be connected to the spoilage defaults observed (decrease in pH, exudate production and sour off-odors).These studies reveal that salt reduction impacts the bacterial community of raw pork sausages (abundance and metabolic activities) and this disruption compromises the organoleptic quality of the products.
19

Heterogeneity and Context-Specificity in Biological Systems

Litvin, Oren January 2014 (has links)
High throughput technologies and statistical analyses have transformed the way biological research is performed. These technologies accomplish tasks that were labeled as science fiction only 20 years ago - identifying millions of genetic variations in a genome, a chip that measures expression levels of all genes, quantifying the concentration of dozens of proteins at a single cell resolution. High-throughput genome-wide approaches allowed us, for the first time, to perform unbiased research that doesn't depend on existing knowledge. Thanks to these new technologies, we now have a much better understanding on what goes awry in cancer, what are the genetic predispositions for numerous diseases, and how to select the best available treatment for each patient based on his/her genetic and genomic features. The emergence of new technologies, however, also introduced many new problems that need to be addressed in order to fully exploit the information within the data. Tasks start with data normalization and artifact identification, continue with how to properly model the data using statistical tools, and end with the suitable ways to translate those statistical results into informative and correct biological insights. A new field - computational biology - was emerged to address those problems and bridge the gap between statistics and biology. Here I present 3 studies on computational modeling of heterogeneity and context-specificity in biological systems. My work focused on the identification of genomic features that can predict or explain a phenotype. In my studies of both yeast and cancer, I found vast heterogeneity between individuals that hampers the prediction power of many statistical models. I developed novel computational models that account for the heterogeneity and discovered that, in most cases, the relationship between the genomic feature and the phenotype is context-specific - genomic features explain, predict or exert influence on the phenotype in only a subset of cases. In the first project I studied the landscape of genetic interactions in yeast using gene expression data. I found that roughly 80% of interactions are context-specific, where genetic mutations influence expression levels only in the context of other mutations. In the second project I used gene expression and copy number data to identify drivers of oncogenesis. By using gene expression as a phenotype, and by accounting for context-specificity, I identified two novel copy number drivers that were validated experimentally. In the third project I studied the transcriptional and phenotypic effects of MAPK pathway inhibition in melanoma. I show that most MAPK targets are context-specific - under the control of the pathway only in a subset of cell lines. A computational model I designed to detect context-specific interactions of the MAPK pathway identified the interferon pathway as a major player in the cytotoxic response of MAPK inhibition. Taken together, my research demonstrates the importance of context-specificity in the analysis of biological systems. Context-specific computational modeling, combined with high-throughput technologies, is a powerful tool for dissecting biological networks.
20

Molecular Studies of Bacterial Communities in the Great Artesian Basin Aquifers

Kanso, Sungwan, n/a January 2004 (has links)
16S rRNA gene analysis has shown that bacterial diversity in the GAB bores studied was limited to the genera Hydrogenobacter in the phylum Aquificae, Thermus in the phylum Deinococcus-Thermus, Desulfotomaculum in the phylum Firmicutes, the alpha-, beta- and gamma-classes of the phylum Proteobacteria and the phylum Nitrospirae. There was no clone closely related to members of the delta-proteobacteria and epsilon-proteobacteria classes detected. The number of bacterial strains directly isolated from the Fairlea and the Cooinda bores were far less than the numbers of distinctive phylotypes detected by the 16S rRNA gene characterisation. In addition none of the bacterial strains directly isolated from the water samples were represented in the 16S rRNA gene clone libraries. Similar discrepancies between the bacterial populations obtained from the 16S rRNA gene analysis and those obtained from direct isolation have been reported in the literature (Dunbar et al., 1999; Kampfer et al., 1996; Suzuki et al., 1997; Ward et al., 1998; Ward et al., 1997). However, in general, the phyla with which the isolates were affiliated were the same as those phyla to which the clones belonged. The environmental changes introduced (by bringing the artesian water up to the surface and exposing it to four types of metal coupons made of carbon steels identified by codes ASTM-A53B, ASTM-A53, AS-1074 and AS-1396 and commonly used in bore casings) led to changes in the bacterial community structures. In general, the species which proliferated in the communities before and after the changes were different. The diversity of the bacterial species in the community decreased following the environmental changes. Clones dominating the clone libraries constructed from newly established bacterial communities also differed from the clones dominating the libraries constructed from the bacterial communities which had existed naturally in the bores. These trends toward change in the bacterial communities were observed at both the Fairlea and the Cooinda bore sites. All four metal types incubated in the Fairlea bore water lost between 3.4 and 4.7% of their original weight. In contrast none of the metals incubated in Cooinda bore water lost weight. Clone library A1 showed that the natural population of the Fairlea bore was dominated by clone A1-3, which represented a novel species related to the isolate boom-7m-04. But after metal incubation (and recording of the metal weight loss), the bacterial community was dominated by clone PKA34B, which has a 95% similarity in its 16S rRNA gene sequence with Desulfotomaculum putei. Desulfotomaculum species are known to cause metal corrosion due to their byproduct H2S. But the low level of phylogenetic relatedness found does not provide enough information to speculate on whether the species represented by clone PKA34B is a member of the genus Desulfotomaculum or not. However, the fact that clone PKA34B dominated the PKA clone library by 50% makes the species it represents a suspected candidate likely to be involved with the metal weight loss at the Fairlea bore. In contrast, clone library 4381 showed that the natural population of the Cooinda bore was dominated by clone 4381-15 representing a species distantly related to a hydrogen oxidiser Hydrogenophaga flava (95% similarity). The dominating clone of the new community formed after metal incubation was clone COO25, which has 99% similarity with Thermus species that have not been reported to be involved with metal corrosion to my knowledge. In this project detection, identification and comparative quantification by 16S rRNA gene-targeted PCR probing with probes 23B and 34B were successfully developed for a Leptothrix-like species and for a Desulfotomaculum-like species represented by clones PKA23B and PKA34B respectively. This method of probing permits a fast, sensitive and reproducible detection, identification and at least a comparative quantification of the bacteria in the environment without the need for culturing. Therefore it is extremely suitable for use in bacterial population monitoring. PCR probing with the 34B probe has a potential commercial use as a means of screening for bores with a potential high risk of corrosion due to this Desulfotomaculum-like species. Direct isolation of bacteria from the GAB water has resulted in the isolation of seven strains from the Fairlea bore and eight from the Cooinda bore. Among these isolates, three novel strains were studied in detail. Reports on the characterisation of strain FaiI4T (T=Type strain) from the Fairlea bore (Kanso & Patel, 2003) and strain CooI3BT from the Cooinda bore have been published (Kanso et al., 2002). The data generated during this project add to our current information and extend our knowledge about the bacterial communities of the GAB's sub-surface environment. This information will provide a basis for further ecological studies of the GAB. Studies on involvement of certain groups of bacteria with the corrosion of metals used in bore casings could provide a foundation for further studies to develop maintenance and managing strategies for the GAB bores.

Page generated in 0.0898 seconds