• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Effect of Changes in Lipid Bilayer Properties on the Activity of the Bacterial Cell Division Regulator Protein MinD

Ayed, Saud 13 September 2012 (has links)
Bacterial cell division requires formation of the cytokinetic cell division septum at the mid-cell position, a process that is determined by three Min proteins; MinC, MinD and MinE. Regulation of cell division by Min proteins occurs via a multi-step process involving interactions between various Min proteins, as well as the membrane. In this cycle, ATP-bound MinD binds to the membrane surface where it can recruit MinC to inhibit formation of the cell division septum. MinE binding to this complex displaces MinC and stimulates ATP hydrolysis, leading to the dissociation of MinD from the membrane. These interactions give rise to a dynamic pattern of Min protein localization that appears to involve a polymeric state that is designed to create a zone that is permissive to cell division at the mid-point of the cell. The interaction between MinD and the membrane is a critical aspect of this cycle, yet the role of the lipid bilayer in MinD activation, localization and polymerization is not well understood. To probe the role of membrane charge and fluidity on MinD activation and polymerization, we developed a kinetic assay of MinE-stimulated MinD ATPase activity. We found that membrane charge is essential for MinD activation and that differences in membrane fluidity give rise to changes in its activity. Moreover, a burst phase was also observed during the first few minutes of reaction, but only on the most fluid anionic lipid tested. To help determine if the observed membrane-dependent changes in MinD activity are linked to any changes in MinD polymer structure, we have begun to develop a method to identify surface exposed regions of MinD through a combination of covalent labeling and mass spectrometry. Optimization of various steps for the assay has been done, and the assay can be applied to the future characterization of MinD polymer structure. Results from this assay, in combination with those from the kinetic measurements described here, will help to improve understanding about how membrane properties modulate MinD ATPase activity, and how this can influence the Min protein oscillation that is required to ensure normal bacterial cell division.
2

Investigation of the Effect of Changes in Lipid Bilayer Properties on the Activity of the Bacterial Cell Division Regulator Protein MinD

Ayed, Saud 13 September 2012 (has links)
Bacterial cell division requires formation of the cytokinetic cell division septum at the mid-cell position, a process that is determined by three Min proteins; MinC, MinD and MinE. Regulation of cell division by Min proteins occurs via a multi-step process involving interactions between various Min proteins, as well as the membrane. In this cycle, ATP-bound MinD binds to the membrane surface where it can recruit MinC to inhibit formation of the cell division septum. MinE binding to this complex displaces MinC and stimulates ATP hydrolysis, leading to the dissociation of MinD from the membrane. These interactions give rise to a dynamic pattern of Min protein localization that appears to involve a polymeric state that is designed to create a zone that is permissive to cell division at the mid-point of the cell. The interaction between MinD and the membrane is a critical aspect of this cycle, yet the role of the lipid bilayer in MinD activation, localization and polymerization is not well understood. To probe the role of membrane charge and fluidity on MinD activation and polymerization, we developed a kinetic assay of MinE-stimulated MinD ATPase activity. We found that membrane charge is essential for MinD activation and that differences in membrane fluidity give rise to changes in its activity. Moreover, a burst phase was also observed during the first few minutes of reaction, but only on the most fluid anionic lipid tested. To help determine if the observed membrane-dependent changes in MinD activity are linked to any changes in MinD polymer structure, we have begun to develop a method to identify surface exposed regions of MinD through a combination of covalent labeling and mass spectrometry. Optimization of various steps for the assay has been done, and the assay can be applied to the future characterization of MinD polymer structure. Results from this assay, in combination with those from the kinetic measurements described here, will help to improve understanding about how membrane properties modulate MinD ATPase activity, and how this can influence the Min protein oscillation that is required to ensure normal bacterial cell division.
3

Investigation of the Effect of Changes in Lipid Bilayer Properties on the Activity of the Bacterial Cell Division Regulator Protein MinD

Ayed, Saud January 2012 (has links)
Bacterial cell division requires formation of the cytokinetic cell division septum at the mid-cell position, a process that is determined by three Min proteins; MinC, MinD and MinE. Regulation of cell division by Min proteins occurs via a multi-step process involving interactions between various Min proteins, as well as the membrane. In this cycle, ATP-bound MinD binds to the membrane surface where it can recruit MinC to inhibit formation of the cell division septum. MinE binding to this complex displaces MinC and stimulates ATP hydrolysis, leading to the dissociation of MinD from the membrane. These interactions give rise to a dynamic pattern of Min protein localization that appears to involve a polymeric state that is designed to create a zone that is permissive to cell division at the mid-point of the cell. The interaction between MinD and the membrane is a critical aspect of this cycle, yet the role of the lipid bilayer in MinD activation, localization and polymerization is not well understood. To probe the role of membrane charge and fluidity on MinD activation and polymerization, we developed a kinetic assay of MinE-stimulated MinD ATPase activity. We found that membrane charge is essential for MinD activation and that differences in membrane fluidity give rise to changes in its activity. Moreover, a burst phase was also observed during the first few minutes of reaction, but only on the most fluid anionic lipid tested. To help determine if the observed membrane-dependent changes in MinD activity are linked to any changes in MinD polymer structure, we have begun to develop a method to identify surface exposed regions of MinD through a combination of covalent labeling and mass spectrometry. Optimization of various steps for the assay has been done, and the assay can be applied to the future characterization of MinD polymer structure. Results from this assay, in combination with those from the kinetic measurements described here, will help to improve understanding about how membrane properties modulate MinD ATPase activity, and how this can influence the Min protein oscillation that is required to ensure normal bacterial cell division.
4

Bakteriální proteiny v biogenezi mitochondrií jednobuněčných eukaryot. / Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.

Petrů, Markéta January 2019 (has links)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
5

Etude de la morphogénèse et de la division chez Streptococcus pneumoniae / Division and morphogenesis in Streptococcus pneumoniae

Jacq, Maxime 18 April 2016 (has links)
La division bactérienne résulte de la constriction de la membrane, menée par la protéine du cytosquelette FtsZ, et de l’expansion et du remodelage de la paroi, réalisés par des synthétases et des hydrolases de la paroi. La coordination de ces processus au sein d’un macrocomplexe protéique, le divisome, est nécessaire au maintien de la forme et de l’intégrité bactérienne. J’ai étudié deux aspects importants de ce mécanisme de coordination chez le pathogène humain Streptococcus pneumoniae. J’ai déterminé in vivo la nanostructure de la protéine FtsZ en développant l’utilisation du PALM (PhotoActivated Localization Microscopy)chez le pneumocoque. Cette technique, basée sur la détection de molécules uniques et permettant une résolution de 20-40 nm, a révélé des aspects inattendus (dimensions, amas, sous-structures) de l’architecture de l’anneau de FtsZ au cours du cycle cellulaire. En parallèle, j’ai étudié le rôle de l’hydrolase Pmp23 par génétique, biochimie et microscopie à fluorescence. Mon travail a montré que Pmp23 est requise pour la stabilité des macrostructures du divisome du pneumocoque, révélant une nouvelle connexion entre le métabolisme de la paroi et la division cellulaire. / Bacterial division results from the combination of membrane constriction, driven by the cytoskeletal protein FtsZ, with cell wall expansion and remodeling, performed by cell wall synthases and hydrolases. Coordination of these processes within a large protein complex known as the divisome ensures cell integrity and maintenance of cell shape. I have investigated two important aspects of this coordination mechanism in the human pathogen Streptococcus pneumoniae. I determined the in vivo nanostructure of the divisome scaffolding protein FtsZ by developing the use of PhotoActivated Localization Microscopy (PALM) in the pneumococcus. PALM, which is based on the detection of single fluorescent labels and allows 20-40 nm resolution, has revealed unexpected features (dimensions, clusters, new substructures) of the FtsZ-ring architecture along the cell cycle. In parallel, I studied the role of the cell wall hydrolase Pmp23 using genetics, biochemistry and fluorescence microscopy. My work has shown that Pmp23 is required for the stability of divisome macrostructures in the pneumococcal cell, revealing a new connection between cell wall metabolism and cell division.
6

Rôle de la sérine-thréonine kinase StkP dans la division et la morphogenèse du pneumocoque / Role of the serine‐threonine kinase StkP in cell division and morphogenesis of Streptococcus pneumoniae

Fleurie, Aurore 02 October 2013 (has links)
La bactérie Streptococcus pneumoniae peut provoquer de sérieuses pathologies chez l'homme telles que des pneumonies, méningites ou septicémies. L'étude de cette bactérie constitue donc un enjeu de santé publique international. Ces dernières années, il a été mis en évidence que les bactéries exprimaient des Sérine/Thréonine Protéine‐Kinases de type eucaryote (STPKs) et que ces dernières intervenaient dans la régulation de nombreux processus cellulaires. Une approche prometteuse serait donc de cibler les mécanismes de régulation contrôlés par les STPKs pour lutter contre les infections à pneumocoque. L'analyse du génome de S. pneumoniae a montré que cette bactérie possède un seul gène codant pour une STPK, la protéine StkP. Mes travaux de thèse ont montré que StkP est un acteur majeur de la division cellulaire et de la morphogenèse du pneumocoque. J'ai montré que son activité kinase est dépendante de la protéine GpsB et qu'elle phosphoryle spécifiquement plusieurs protéines dont la protéine de division DivIVA. L'ensemble de mes travaux permet de proposer un modèle dans lequel la triade StkP/GpsB/DivIVA régulerait finement la division et l'élongation cellulaire du pneumocoque. À plus long terme, ces travaux pourront servir de base à des études plus structurales pour développer des molécules bloquant les processus dépendants de la phosphorylation assurée par StkP, et générer ainsi de nouvelles molécules affectant le pouvoir pathogène du pneumocoque / The bacterium Streptococcus pneumoniae is the causative agent of several diseases such as pneumonia, meningitis or septicemia. The study of this bacterium represents thus an international health challenge. Over the last decade, bacteria have been shown to produce eukaryotic‐like Serine/Threonine Protein‐Kinases (STPKs) that are involved in the regulation of several cellular processes. A promising approach would be to target the regulatory mechanisms controlled by STPKs to combat pneumococcal infections. The pneumococcus possesses a single gene encoding for a STPK, the protein StkP. The aim of my work was to characterize the biological function of StkP. My work shows that StkP plays crucial roles in the cell division and morphogenesis of S. pneumoniae. I show that the cell division protein GpsB is required for the kinase activity of StkP that, in turn, specifically phosphorylates the cell division protein DivIVA. Altogether, I propose a model in which the StkP/GpsB/DivIVA triad finely tunes S. pneumonia cell division and elongation. These data could provide the basis for future structural studies to develop specific inhibitors of StkP‐mediated phosphorylation and affecting pneumococcal virulence

Page generated in 0.1104 seconds