• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The molecular genetics of iron uptake in rhizobium leguminosarum

Stevens, James B. January 1999 (has links)
No description available.
2

Lipid phosphate phosphatases : purification and investigation of their role in cellular lipid signalling

Darroch, Peter Ian January 2001 (has links)
Several isoforms of LPP have now been identified and cloned but remain to be purified. In the present study, a bacterial expression system was established and hexa- and deca-histidine epitope tagged-LPP1 and LPPla expressed in E. coli. In addition, a maltose binding protein (MBP) epitope tagged-LPP Ia was expressed in E. coli. Hexa- and deca-histidine LPP1 and LPPla, were partially purified using immobilised affinity chromatography. MBP-LPPla was expressed to higher levels than hexa- and deca-histidine LPP1 and LPPla in E. coli, most probably within insoluble inclusion bodies. In all cases, recovery of LPP activity was low. Membranes derived from HEK293 cells that stably over-express LPP I, LPP I a, LPP2 or LPP3 were used to demonstrate the differential hydrolysis of several molecular species of PA, LPA(18: 1), C8-CIP and SlP. Kinetic analysis using a multisubstrate assay system revealed that the LPP isoforms do not follow typical Michaelis-Menten kinetics towards most substrates under the assay conditions employed. The LPPs appear to show differential kinetics depending on the complement of substrates accessible to the enzymes. Stable over-expression of LPPI, LPPla, LPP2, but not LPP3, in HEK293 cells has previously been shown to attenuate the activation of ERK-1/2 by G-protein coupled receptors agonists such as SIP, LPA, PA and thrombin. The present study extended these observations by showing that basal growth rates were unaffected and that levels of mRNA transcript for the SIP, /EDGI receptor were reduced in the LPP stable cell lines but that this did not correlate with attenuation of the SIP-stimulated ERK-1/2 response. In addition, transient overexpression of LPPI, LPPIa and LPP2, but not LPP3 in HEK293 cells and GPASM cells also resulted in the attenuation of SIPinduced ERK-1/2 activation. Furthermore, transient transfection of a plasmid construct encoding the antisense sequence for LPP1 was also found to attenuate SIPinduced ERK-1/2 activation whereas the PMA-stimulated response was unaffected. Many questions remain to be fully answered in order to determine the physiological and pathophysiological. roles of the LPPs and the reason for the molecular diversity of the enzyme family.
3

Biotechnologické využití rostlinných virů / Plant virus-based biotechnology

Vaculík, Petr January 2015 (has links)
The latest model of tertiary structure of capsid protein of potato virus X (PVX CP) was used as a template to design new insertion sites suitable for the preparation of PVX-based antigen presentation system. Based on this model, seven insertion sites (A-G) located in putative surface loops were tested. As an antigen inserted into these sites was used 17 amino acids long epitope derived from human papillomavirus type 16 E7 oncoprotein (E7 epitope) fused with either 6xHis tag or StrepII tag in both possible orientations (6xHis-E7 and E7-6xHis, StrepII-E7 and E7-StrepII). Prior to plant expression, modified PVX CPs were expressed in Escherichia coli MC1061. The results showed that only PVX CP carrying StrepII-E7 or E7-StrepII in the insertion site A formed virus particles. The results from transient expression experiments with modified PVX CPs in Nicotiana benthamiana showed that only the insertion site A (located between 24th and 25th amino acid in the PVX CP) could tolerate all tested inserts. Importantly, viral particles were detected only in the presence of StrepII tag and their stability was affected by the insert orientation (StrepII-E7 vs. E7-StrepII) as only the viral particles presenting E7-StrepII could be purified. Besides the preparation of PVX-based antigen presentation system, an...
4

Cloning and characterization of the human coronavirus NL63 nucleocapsid protein

Berry, Michael January 2011 (has links)
<p>The human coronavirus NL63 was discovered in 2004 by a team of researchers in Amsterdam. Since its discovery it has been shown to have worldwide spread and affects mainly children, aged 0-5 years old, the immunocompromised and the elderly. Infection with HCoV-NL63 commonly results in mild upper respiratory tract infections and presents as the common cold, with symptoms including fever, cough, sore throat and rhinorrhoea. Lower respiratory tract findings are less common but may develop into more serious complications including bronchiolitis, pneumonia and croup. The primary function of the HCoV-NL63 nucleocapsid (N) protein is the formation of theprotective ribonucleocapsid core. For this particle to assemble, the N-protein undergoes N-N dimerization and then interacts with viral RNA. Besides the primary structural role of the Nprotein, it is also understood to be involved in viral RNA transcription, translation and replication, including several other physiological functions. The N-protein is also highly antigenic and elicits a strong immune response in infected patients. For this reason the N-protein may serve as a target for the development of diagnostic assays. We have used bioinformatic analysis to analyze the HCoV-NL63 N-protein and compared it to coronavirus N-homologues. This bioinformatic analysis provided the data to generate recombinant clones for expression in a bacterial system. We constructed recombinant clones of the N-protein of SARS-CoV and HCoV-NL63 and synthesized truncated clones corresponding to the N- and C-terminal of the HCoV-NL63 N-protein. These heterologously expressed proteins will serve the basis for several post-expression studies including characterizing the immunogenic epitope of the N-protein as well identifying any antibody crossreactivity between coronavirus species.</p>
5

Cloning and characterization of the human coronavirus NL63 nucleocapsid protein

Berry, Michael January 2011 (has links)
<p>The human coronavirus NL63 was discovered in 2004 by a team of researchers in Amsterdam. Since its discovery it has been shown to have worldwide spread and affects mainly children, aged 0-5 years old, the immunocompromised and the elderly. Infection with HCoV-NL63 commonly results in mild upper respiratory tract infections and presents as the common cold, with symptoms including fever, cough, sore throat and rhinorrhoea. Lower respiratory tract findings are less common but may develop into more serious complications including bronchiolitis, pneumonia and croup. The primary function of the HCoV-NL63 nucleocapsid (N) protein is the formation of theprotective ribonucleocapsid core. For this particle to assemble, the N-protein undergoes N-N dimerization and then interacts with viral RNA. Besides the primary structural role of the Nprotein, it is also understood to be involved in viral RNA transcription, translation and replication, including several other physiological functions. The N-protein is also highly antigenic and elicits a strong immune response in infected patients. For this reason the N-protein may serve as a target for the development of diagnostic assays. We have used bioinformatic analysis to analyze the HCoV-NL63 N-protein and compared it to coronavirus N-homologues. This bioinformatic analysis provided the data to generate recombinant clones for expression in a bacterial system. We constructed recombinant clones of the N-protein of SARS-CoV and HCoV-NL63 and synthesized truncated clones corresponding to the N- and C-terminal of the HCoV-NL63 N-protein. These heterologously expressed proteins will serve the basis for several post-expression studies including characterizing the immunogenic epitope of the N-protein as well identifying any antibody crossreactivity between coronavirus species.</p>
6

Cloning and expression of human recombinant isoform a of glycine-N-acyltransferase

Grundling, Daniel Andries January 2012 (has links)
Awareness of detoxification, nowadays known as biotransformation, has become an integral part of our daily lives. It is a modern buzz word that is used to promote anything from health food to enhancement of performance in sports. Another lesser known application for detoxification is as a therapy for alleviating symptoms of inborn errors of metabolism. Detoxification is the process where endogenous and xenobiotic metabolites are transformed to less harmful products, in the liver and kidneys, in two phases. Phase 1 detoxification includes oxidation, hydroxylation, dehydrogenation metabolic reduction and hydrolysis. Phase 2 detoxification uses conjugation reactions to increase hydrophillicty of metabolites for excretion in bile and urine. Glycine N-acyltransferse (GLYAT; EC 2.3.1.13) is one of the amino acid conjugation enzymes. There are two variants of human GLYAT. I focused on the full-length mRNA human GLYAT isoform a, with a long term view of using it as a viable therapeutic enzyme for enhanced detoxification of harmful metabolites. I investigated if it is possible to clone and express a biologically active GLYAT. To achieve this goal I used three expression systems: traditional bacterial expression using the pET system; second generation cold shock bacterial expression using the pCOLDTF expression vector to improve solubility of the recombinant protein; and baculovirus expression in insect cells since therein some form of post translation glycosylation of the recombinant protein can occur which might improve solubility and ensure biological activity. The recombinant GLYAT expressed well in all three expression systems but was aggregated and no enzyme activity could be detected. A denature and renature system was also used to collect aggregated recombinant GLYAT and used to try to refold the recombinant protein in appropriate refolding buffers to improve solubility and obtain biological activity. The solubility of the recombinant GLYAT was improved but it remained biologically inactive. / Thesis (MSc (Biochemistry))--North-West University, Potchefstroom Campus, 2013.
7

Cloning and expression of human recombinant isoform a of glycine-N-acyltransferase

Grundling, Daniel Andries January 2012 (has links)
Awareness of detoxification, nowadays known as biotransformation, has become an integral part of our daily lives. It is a modern buzz word that is used to promote anything from health food to enhancement of performance in sports. Another lesser known application for detoxification is as a therapy for alleviating symptoms of inborn errors of metabolism. Detoxification is the process where endogenous and xenobiotic metabolites are transformed to less harmful products, in the liver and kidneys, in two phases. Phase 1 detoxification includes oxidation, hydroxylation, dehydrogenation metabolic reduction and hydrolysis. Phase 2 detoxification uses conjugation reactions to increase hydrophillicty of metabolites for excretion in bile and urine. Glycine N-acyltransferse (GLYAT; EC 2.3.1.13) is one of the amino acid conjugation enzymes. There are two variants of human GLYAT. I focused on the full-length mRNA human GLYAT isoform a, with a long term view of using it as a viable therapeutic enzyme for enhanced detoxification of harmful metabolites. I investigated if it is possible to clone and express a biologically active GLYAT. To achieve this goal I used three expression systems: traditional bacterial expression using the pET system; second generation cold shock bacterial expression using the pCOLDTF expression vector to improve solubility of the recombinant protein; and baculovirus expression in insect cells since therein some form of post translation glycosylation of the recombinant protein can occur which might improve solubility and ensure biological activity. The recombinant GLYAT expressed well in all three expression systems but was aggregated and no enzyme activity could be detected. A denature and renature system was also used to collect aggregated recombinant GLYAT and used to try to refold the recombinant protein in appropriate refolding buffers to improve solubility and obtain biological activity. The solubility of the recombinant GLYAT was improved but it remained biologically inactive. / Thesis (MSc (Biochemistry))--North-West University, Potchefstroom Campus, 2013.
8

Cloning and characterization of the human coronavirus NL63 nucleocapsid protein

Berry, Michael January 2011 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / The human coronavirus NL63 was discovered in 2004 by a team of researchers in Amsterdam. Since its discovery it has been shown to have worldwide spread and affects mainly children, aged 0-5 years old, the immunocompromised and the elderly. Infection with HCoV-NL63 commonly results in mild upper respiratory tract infections and presents as the common cold, with symptoms including fever, cough, sore throat and rhinorrhoea. Lower respiratory tract findings are less common but may develop into more serious complications including bronchiolitis, pneumonia and croup. The primary function of the HCoV-NL63 nucleocapsid (N) protein is the formation of theprotective ribonucleocapsid core. For this particle to assemble, the N-protein undergoes N-N dimerization and then interacts with viral RNA. Besides the primary structural role of the Nprotein, it is also understood to be involved in viral RNA transcription, translation and replication, including several other physiological functions. The N-protein is also highly antigenic and elicits a strong immune response in infected patients. For this reason the N-protein may serve as a target for the development of diagnostic assays. We have used bioinformatic analysis to analyze the HCoV-NL63 N-protein and compared it to coronavirus N-homologues. This bioinformatic analysis provided the data to generate recombinant clones for expression in a bacterial system. We constructed recombinant clones of the N-protein of SARS-CoV and HCoV-NL63 and synthesized truncated clones corresponding to the N- and C-terminal of the HCoV-NL63 N-protein. These heterologously expressed proteins will serve the basis for several post-expression studies including characterizing the immunogenic epitope of the N-protein as well identifying any antibody crossreactivity between coronavirus species. / South Africa
9

Cloning and evaluation of expression of the open reading frames of a South African G9P[6] rotavirus strain encoding rotavirus structural proteins VP2 and VP6 in bacteria and yeast / Louisa Aletta Naudé

Naudé, Louisa Aletta January 2015 (has links)
Rotavirus infection causes severe gastroenteritis, affecting all children under the age of five regardless of hygiene or water quality. The currently licensed vaccines succeeded in reducing diarrhoea worldwide, but they still have shortcomings, especially the efficacy of the vaccines in developing countries. One of the main reasons for this can be due to the difference in strains, since the strains used to develop the currently licensed vaccines (RotaTeq and Rotarix) were selected from strains circulating in the developed world (G1, G2, G3 and G4), while the main strains present in Africa (G8, G9 and G12) were not included. A second shortcoming of the currently licensed vaccines is the cost of these vaccines. The vaccines are very expensive and most developing countries cannot afford the vaccines as well as the fact that the manufacturing companies cannot produce enough vaccines for all the countries. An attractive alternative to the currently licensed rotavirus vaccines is the non-live vaccine candidate, virus-like particles, which can provide a possible cheaper, safer and efficacious alternative or complement the currently licensed vaccines. Therefore, in this study a South African G9P[6] rotavirus strain, RVA/Humanwt/ ZAF/GR10924/1999/G9P[6], was used to determine whether or not co-expression of the structural proteins VP2 (genome segment 2) and VP6 (genome segment 6) was possible in bacteria and yeast. The South African GR10924 G9P[6] neonatal strain was previously obtained from a stool sample and the nucleotide consensus sequence was determined for both genome segment 2 (VP2) and genome segment 6 (VP6). Bacterial codon optimised coding regions or open reading frames were used in this study. The open reading frames (ORFs) of the genome segments encoding, VP2 and VP6, were cloned into the expression vector pETDuet-1, which allows for the simultaneous expression of two genes in bacteria. The ORF of genome segment 6 was purchased from GeneScript and the ORF of genome segment 2 was obtained from Dr AC Potgieter (Deltamune (Pty) Ltd R&D, South Africa). Compatible restriction enzyme sites were used to sub-clone the ORF of the bacterial codon optimised genome segments into the expression vector. Only the expression of the VP6 protein in bacteria was observed with Coomassie stained SDS-PAGE. The ORFs encoding VP2 (genome segment 2) and VP6 (genome segment 6) of the wild type GR10924 G9P[6] strain were cloned into the wide range yeast expression system vector, pKM173, which allows for the simultaneous expression of more than one gene. Several yeast strains were used in this study namely Kluyveromyces marxianus, Kluyveromyces lactis, Candida deformans, Saccharomyces cerevisiae, Yarrowia lipolytica, Arxula adeninivorans, Hansenula polymorpha and Debaryomyces hansenii. Expression of both proteins was not detected in the several yeast strains, as seen with western blot analysis. DNA extractions were done on two colonies of each yeast strain that were used for western blot analysis to evaluate successful integration into the yeast genomes. Only a few of the colonies contained either both of the genome segments or only one of the two genome segments of interest. To summarise, the simultaneous expression of VP2 and VP6 from rotavirus GR10924 G9P[6] was not successful in bacteria or yeast, but it was possible to soluble express the bacterial codon optimised GR10924 G9P[6] VP6 in bacteria using the pETDuet-1 as expression vector. / MSc (Biochemistry), North-West University, Potchefstroom Campus, 2015
10

Cloning and evaluation of expression of the open reading frames of a South African G9P[6] rotavirus strain encoding rotavirus structural proteins VP2 and VP6 in bacteria and yeast / Louisa Aletta Naudé

Naudé, Louisa Aletta January 2015 (has links)
Rotavirus infection causes severe gastroenteritis, affecting all children under the age of five regardless of hygiene or water quality. The currently licensed vaccines succeeded in reducing diarrhoea worldwide, but they still have shortcomings, especially the efficacy of the vaccines in developing countries. One of the main reasons for this can be due to the difference in strains, since the strains used to develop the currently licensed vaccines (RotaTeq and Rotarix) were selected from strains circulating in the developed world (G1, G2, G3 and G4), while the main strains present in Africa (G8, G9 and G12) were not included. A second shortcoming of the currently licensed vaccines is the cost of these vaccines. The vaccines are very expensive and most developing countries cannot afford the vaccines as well as the fact that the manufacturing companies cannot produce enough vaccines for all the countries. An attractive alternative to the currently licensed rotavirus vaccines is the non-live vaccine candidate, virus-like particles, which can provide a possible cheaper, safer and efficacious alternative or complement the currently licensed vaccines. Therefore, in this study a South African G9P[6] rotavirus strain, RVA/Humanwt/ ZAF/GR10924/1999/G9P[6], was used to determine whether or not co-expression of the structural proteins VP2 (genome segment 2) and VP6 (genome segment 6) was possible in bacteria and yeast. The South African GR10924 G9P[6] neonatal strain was previously obtained from a stool sample and the nucleotide consensus sequence was determined for both genome segment 2 (VP2) and genome segment 6 (VP6). Bacterial codon optimised coding regions or open reading frames were used in this study. The open reading frames (ORFs) of the genome segments encoding, VP2 and VP6, were cloned into the expression vector pETDuet-1, which allows for the simultaneous expression of two genes in bacteria. The ORF of genome segment 6 was purchased from GeneScript and the ORF of genome segment 2 was obtained from Dr AC Potgieter (Deltamune (Pty) Ltd R&D, South Africa). Compatible restriction enzyme sites were used to sub-clone the ORF of the bacterial codon optimised genome segments into the expression vector. Only the expression of the VP6 protein in bacteria was observed with Coomassie stained SDS-PAGE. The ORFs encoding VP2 (genome segment 2) and VP6 (genome segment 6) of the wild type GR10924 G9P[6] strain were cloned into the wide range yeast expression system vector, pKM173, which allows for the simultaneous expression of more than one gene. Several yeast strains were used in this study namely Kluyveromyces marxianus, Kluyveromyces lactis, Candida deformans, Saccharomyces cerevisiae, Yarrowia lipolytica, Arxula adeninivorans, Hansenula polymorpha and Debaryomyces hansenii. Expression of both proteins was not detected in the several yeast strains, as seen with western blot analysis. DNA extractions were done on two colonies of each yeast strain that were used for western blot analysis to evaluate successful integration into the yeast genomes. Only a few of the colonies contained either both of the genome segments or only one of the two genome segments of interest. To summarise, the simultaneous expression of VP2 and VP6 from rotavirus GR10924 G9P[6] was not successful in bacteria or yeast, but it was possible to soluble express the bacterial codon optimised GR10924 G9P[6] VP6 in bacteria using the pETDuet-1 as expression vector. / MSc (Biochemistry), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0813 seconds