Spelling suggestions: "subject:"abacterial genetics"" "subject:"bybacterial genetics""
131 |
Memories are made of this : investigating the CRISPR-Cas adaption mechanismRollie, Clare January 2017 (has links)
CRISPR-Cas is an adaptive immune system unique to prokaryotes, which prevents infection by foreign genetic elements. Key to the function of CRISPR-Cas immunity is the ability to adapt to new threats in incorporating short segments, termed spacers, of invading DNA into the clustered regularly interspaced short palindromic repeat (CRISPR) array of the host. Spacers constitute immunological memories, used by CRISPR-associated (Cas) proteins to mount a sequence-specific attack on subsequent infections. The immunisation of the host is called CRISPR adaption. Adaption requires the integration of new spacers at a precise site in the CRISPR array. Two proteins, Cas1 and Cas2, are essential for adaptation; however, the mechanisms of spacer integration remain poorly understood. The work described here focused on understanding adaptation in Sulfolobus solfataricus. Using biochemical assays, I aimed to characterise the activity of the Cas1 and Cas2 proteins in this organism in order to understand their role in the insertion of new spacers. Additionally, I aimed to investigate how the expression of CRISPR-Cas components is regulated in this organism in response to viral infection. The results presented here show that expression of Cas1 was strongly upregulated in response to infection. A Csa3 protein from S. solfataricus was found to bind to the promoter for transcription of cas1, implying a role in the regulation observed. I reconstituted in vitro both the integration reaction performed by Cas1 and Cas2 proteins of S. solfataricus and the reverse of this reaction, disintegration. Cas1 was shown to impose sequence specificity on these reactions, selecting sites similar to the leader-repeat junction of the CRISPR locus. Finally, I demonstrated that, in addition to the intrinsic specificity of Cas1, there was a requirement for an additional host factor for site-specific integration in S. solfataricus.
|
132 |
Investigating the Origin and Functions of a Novel Small RNA in <i>Escherichia coli</i>Kacharia, Fenil Rashmin 08 June 2016 (has links)
Non-coding small RNAs (sRNAs) regulate various cellular processes in bacteria. They bind to a chaperone protein Hfq for stability and regulate gene expression by base-pairing with target mRNAs. Although the importance of sRNAs in bacteria has been well established, the mode of origination of novel sRNA genes is still elusive, mainly because the rapid rate of evolution of sRNAs obscures their original sources. To overcome this impediment, we identified a recently formed sRNA (EcsR2) in E. coli, and show that it evolved from a degraded bacteriophage gene. Our analyses also revealed that young sRNAs such as EcsR2 are expressed at low levels and evolve at a rapid rate in comparison to older sRNAs, thereby uncovering a novel process that potentially facilitates newly emerging (and probably mildly deleterious) sRNAs to persist in bacterial genomes. We also show that even though EcsR2 is slightly deleterious to E. coli, it could bind to Hfq and mRNAs to regulate the expression of several genes. Interestingly, while EcsR2 expression is induced by glucose, the expression of its putative targets are regulated by the transcription factor CRP in response to glucose, indicating that EcsR2 has been incorporated into the carbon regulatory network in E. coli. Collectively, this work provides evidence for the emergence, evolution and functions of a novel "young" sRNA in bacteria.
|
133 |
Restriction mapping and expression of recombinant plasmids containing the arsenic resistance genes of the plasmid R45Coons, Terry M. 01 January 1986 (has links)
The trivalent (arsenite) and pentavalent (arsenate) forms of arsenic are introduced into the environment through the use of arsenic in herbicides, pesticides, fertilizers, and the smelting of arsenic-bearing ores. Bacteria resistant to arsenic are readily isolated from surface waters, sewage, and clinical infections. Although some bacterial resistance is provided by inducible phosphate transport systems that discriminate against arsenate, marked resistance is carried on bacterial plasmids.
A 6.9 kilobase fragment previously derived from one such plasmid, R45, and containing the genes for inducible resistance to arsenite and arsenate was ligated into the cloning vectors puce and pUC9 in opposite orientations and transformed into Escherichia coli JM 105. Insertion into the multiple cloning site of the pUC vectors places the inserted fragment under the inducible control of the lac operon promoter. An attempt was made to determine the direction of transcription in the fragment by growth in 10-3 M isopropyl-β-D-thiogalactoside prior to challenge with arsenite.
|
134 |
Isolation and characterization of plasmids from human and environmental isolates of mycobacteriaMeissner, Paul Scott January 1984 (has links)
Human clinical (n=131) and environmental (n=226) isolates of the Mycobacterium avium-intracellulare and M. scrofulaceum (MAIS) complex were screened for plasmids in an effort to increase knowledge about the genetics and epidemiology of these pathogenic bacteria. Approximately 50% of the clinical MAIS isolates from New York, Maryland, Virginia, South Carolina, and Georgia contained one or more plasmids. On the basis of plasmid content, aerosol MAIS isolates more closely resembled human MAIS isolates than did MAIS isolates from the other environmental sources examined (dust, soil, sediment, and water). Plasmid profiles were remarkably heterogenous, and isolates with identical profiles were rarely encountered. However, a 115 megadalton (Md) plasmid was detected in 15 mercury resistant human and environmental isolates. In one of these isolates (M. scrofulaceum W262) the presence of the 115 Md plasmid was shown to correlate with the presence of an NAD(P)H dependent mercuric reductase. Plasmids with molecular weights of 8.8, 11.2, 14.2, 16.9, 17.9, and 18.3 Md were also common among both human and environmental isolates. On the basis of molecular weight, 36 distinct plasmids were detected; their sizes ranged from 7 to 230 Md. It was concluded that human and environmental MAIS isolates share a number of plasmids with identical molecular weights and that plasmids can serve as useful entities in genetic and epidemiologic studies of this group of extremely slow-growing, poorly understood human and animal pathogens. / Ph. D.
|
135 |
GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regionsFarhat, M.R., Freschi, L., Calderon, R., Ioerger, T., Snyder, M., Meehan, Conor J., de Jong, B.C., Rigouts, L., Sloutsky, A., Kaur, D., Sunyaev, S., van Soolingen, D., Shendure, J., Sacchettini, J., Murray, M. 16 September 2019 (has links)
Yes / Drug resistance diagnostics that rely on the detection of resistance-related mutations could expedite patient care and TB eradication. We perform minimum inhibitory concentration testing for 12 anti-TB drugs together with Illumina whole-genome sequencing on 1452 clinical Mycobacterium tuberculosis (MTB) isolates. We evaluate genome-wide associations between mutations in MTB genes or non-coding regions and resistance, followed by validation in an independent data set of 792 patient isolates. We confirm associations at 13 non-canonical loci, with two involving non-coding regions. Promoter mutations are measured to have smaller average effects on resistance than gene body mutations. We estimate the heritability of the resistance phenotype to 11 anti-TB drugs and identify a lower than expected contribution from known resistance genes. This study highlights the complexity of the genomic mechanisms associated with the MTB resistance phenotype, including the relatively large number of potentially causal loci, and emphasizes the contribution of the non-coding portion of the genome. / Biomedical research grant from the American Lung Association (PI MF, RG-270912-N), a K01 award from the BD2K initiative (PI MF, ES026835), and an NIAID U19 CETR grant (P.I. M.M., AI109755), the Belgian Science Policy (Belspo) (L.R., C.J.M.).
|
136 |
Defining Components Linked to Bacterial Nutritional Utilization of Cyanide as a Sole Nitrogen SourceJones, Lauren Brittany 05 1900 (has links)
One of the challenges in biology is placing a function on the myriad of gene sequences having become available from rapid advances in genome sequencing. One such example is a gene cluster (Nit1C) found in bacteria that is tied to the unusual ability of certain bacteria to grow when supplied cyanide as the sole nitrogen source. The term cyanotrophs has been applied to such bacteria, for which a genetic linkage between cyanotrophy and Nit1C was demonstrated for 10 separate bacteria. In addition to growth, cyanide induced the expression of Nit1C genes in all organisms tested, and in one case, deletion of one of the Nit1C genes (nitC) caused a loss of growth. Of the ten bacteria able to grow cyanotrophically, all gave evidence of harboring Nit1C on their genome except for two (Pseudomonas fluorescens Pf11764 and P. monteilii BCN3), which were sequenced and the presence of Nit1C was also confirmed. A broader search of bacteria identified 270 separate strains with the cluster, all limited to bacteria spanning the phyla Firmicutes, Actinobacteria, Proteobacteria and Cyanobacteria. Remarkably, many examples of a single representative of a given taxon contained Nit1C, most poignantly displayed by Pf11764 and PmBCN3; the interpretation being the cluster was likely acquired by horizontal gene transfer in response to cyanide as an environmental cue. Consistent with its absence in Archaea is the time line for the emergence of cyanide producing organisms (cyanogens) on earth dating back only 400-500 million years.
|
137 |
The identification and characterisation of the arsenic resistance genes of the gram-positive bacterium, Sulfobacillus thermosulfidooxidans VKM B-1269TVan der Merwe, Jacobus Arnoldus 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The arsenic resistance operon (ars operon) of the Gram-positive, iron-oxidizing, acidophilic,
moderately thermophilic bacterium, Sulfobacillus thermosulfidooxidans VKM B-1269T (Sb. t.
VKM B-1269T), was isolated and characterised. The ars operon was chromosomally located
and consisted of an arsR (codes for a transcriptional regulator) and an arsB (codes for a
membrane located arsenic/antimony efflux pump). The arsRB genes were transcribed in the
same direction. An arsC (codes for an arsenate reductase), usually associated with ars
operons, was absent from this ars operon. PCR and Southern-hybridization experiments
revealed that no arsC, representative of either the Grx/GSH or Trx ArsC families was present
in the genome of Sb. t. VKM B-1269T. An interesting feature of the ars operon was the
presence of a gene encoding a 525 amino acid (60.83 kDa) kumamolisin-As precursor located
upstream of the arsRB operon. The intergenic region between the termination end of the
kumamolisin-As precursor gene and the transcriptional start of the arsR gene was only 77 bp,
suggesting that this ars operon might consist of three genes. RT-PCR analysis showed that
the ars operon of Sb. t. VKM B-1269T, was not co-transcribed with the kumamolisin-As
precursor gene in its native Sulfobacillus host.
The ars operon of Sb. t. VKM B-1269T did not complement an Escherichia coli arsenic
sensitive mutant. mRNA transcript analysis and promoter expression studies confirmed that
processes involved in the production of functional proteins from the ars operon transcript
were likely to be responsible for the inability of the arsRB operon of Sb. t. VKM B-1269T to
confer resistance to arsenic in the heterologous E. coli host.
Eight Sulfobacillus strains isolated from different geographical areas were subjected to
amplified ribosomal DNA restriction enzyme analysis (ARDREA) using the restriction
endonuclease Eco1015 (SnaBI) and revealed that they could be divided into the proposed
Sulfobacillus spp. subgroup I and subgroup II, respectively (Johnson et al., 2005). The
presence, distribution and relatedness of the ars genes among members of genus Sulfobacillus
was determined. Phylogenetic sequence comparisons revealed two clearly defined arsB
clusters within genus Sulfobacillus and showed that the arsB of a specific Sulfobacillus sub
specie is distinctive of that specific Sulfobacillus sub specie. Futhermore, sequence analysis
of the isolated arsB homologue fragments from the respective Sulfobacillus spp. showed that four distinctive profiles could be identified based on differences in the location of restriction
endonuclease recognition sites. / AFRIKAANSE OPSOMMING: Die arseen weerstandbiedendheidsoperon (ars operon) van die Gram-positiewe, ysteroksiderende,
asidofiliese, matige termofiliese bakterium, Sulfobacillus thermosulfidooxidans
VKM B-1269T (Sb. t. VKM B-1269T), was geïsoleer en gekarakteriseer. Die ars operon was
op die chromosoom geleë en het uit ‘n arsR (kodeer vir ‘n transkripsionele reguleerder) en ‘n
arsB (kodeer vir ‘n membraan geleë arseen/timien uitskeidings pomp) bestaan. Die arsRB
gene word in dieselfde rigting getranskribeer. ‘n arsC (kodeer vir ‘n arsenaat reductase), wat
gewoontlik geassosïeer word met ars operons, was afwesig van hierdie ars operon. PKR en
Southern-hibridisasie eksperimente het aangedui dat geen arsC, verteenwoordigend van
beide die Grx/GSH of Trx ArsC families, nie teenwoordig was in die genoom van Sb. t. VKM
B-1269T, nie. ‘n Interressante eienskap van hierdie ars operon was die teenwoordigheid van
‘n geen wat stroom-op van die arsRB operon geleë is en ‘n 525 amino suur (60.83 kDa)
kumamolisin-As voorloper kodeer. Die intergeniese gedeelte tussen die terminerings einde
van die kumamolisin-As voorloper en die transkriptionele begin van die arsR geen was slegs
77 bp, wat voorgestel het dat die ars operon moontlik uit drie gene bestaan. RT-PKR analiese
het bewys dat die ars operon van Sb. t. VKM B-1269T, nie geko-getranskribeer word met die
kumamolisin-As voorloper in sy oorspronklike Sulfobacillus gasheer nie.
Die ars operon van Sb. t. VKM B-1269T, het nie ‘n Escherichia coli arseen sensitiewe mutant
gekomplimenteer nie. mRNA transkrip-analiese en promoter uitdrukkings eksperimente het
bevestig dat prosesse wat betrokke is in die produksie van funksionele proteïene vanaf die ars
operon transkrip, moontlik vir die onvermoë van die arsRB operon van Sb t. VKM B-1269T
verantwoordelik was om weerstandbiedendheid teen arseen in die heteroloë E. coli gasheer te
verleen.
Agt Sulfobacillus stamme wat geïsoleer is vanuit verskillende geografiese areas, was
onderhewig aan geamplifiseerde ribosomale DNA restriksie-ensiem-analiese (ARDREA) deur
gebruik te maak van restriksie endonuklease Eco1015 (SnaBI) en het aangedui dat hulle in die
voorgestelde Sulfobacillus spp. subgroup I en subgroup II ingedeel kan word (Johnson et al.,
2005). Die aanwesigheid, verspreiding en verwantskappe van die ars gene tussen lede van
genus Sulfobacillus was bepaal. Filogenetiese DNA volgorde vergelykings het aangedui dat twee duidelik definïeerbare arsB groepe van mekaar onderskei kan word en dat die arsB van
‘n spesifieke Sulfobacillus sub spesie uniek tot daardie spesifieke Sulfobacillus subspesie is.
Bykomend, DNA volgorde analiese van die geïsoleerde arsB homoloog fragmente van die
Sulfobacillus spp. het gewys dat vier unieke profiele, op grond van verskille in die ligging van
restriksie ensiem herkenning setels, geïdentifiseer kan word.
|
138 |
Design of temperature inducible transcription factors and cognate promotersMcWhinnie, Ralph 30 May 2016 (has links)
The ability to control expression of a gene of interest is an important tool of molecular biologists and genetic engineers. This allows the phenotype associated with the regulated gene or genetic pathway to be partially de-coupled from the genotype and expressed only under condition that lend to induction of the genetic control system employed. Such control is typically implemented through a repressor protein (Eg. TetR, LacI) which will repress transcription when bound to a promoter containing a binding site (operator) recognized specifically by that repressor. Many such repressors and their cognate promoters are well-defined and characterized in model genetic systems, such as Escherichia coli, and may function poorly in other bacterial species. A lack of genetic components that allow the controlled expression of heterologous genes in less well studied bacterial species may limit their bio-industrial potential and the sophistication of engineered phenotypes. The work presented here uses random mutagenesis and selection to isolate mutants of TetR that are inducible by increased culture temperature. Induction of protein expression by temperature change can have benefits over repressors that require small-molecule inducers in bio-industrial applications as reversal of induction and reuse of growth medium are possible. The host range of these, or any, repressor protein is limited by the host range in which its cognate promoter will function. To bypass this limitation and allow use of TetR in Francisella novicida, a method was developed by which TetR-responsive promoters that function in this host could be selected from random DNA sequence flanking the TetR binding site, tetO. Many unique TetR-repressible promoters that function in Francisella were recovered and tightly-regulated expression of both exogenous reporter genes and host virulence genes were demonstrated. This promoter selection technique was also applied to E. coli, which allowed comparison between Francisella-selected promoters and those selected in an E. coli host. Adaption of this process for production of promoters responsive to transcription factors other than TetR would simply require the use of a different operator sequence, suggesting diverse applications for this technique. This success in promoter engineering should enable advances in synthetic biology and genetic engineering in non-model bacterial species. / Graduate
|
139 |
A role for polynucleotide phosphorylase in protecting cells and controlling RNA quality under oxidative stressUnknown Date (has links)
RNA damage occurring under oxidative stress has been shown to cause RNA dysfunction and must be detrimental to cells and organisms. We propose that damaged RNA can be removed by specific RNA surveillance activities. In this work, we investigated the role of polynucleotide phosphorylase (PNPase), a 3'->5' exoribonuclease, in protecting the cells against oxidative stress and eliminating oxidatively-damaged RNA. Previously, it was reported that E. coli PNPase has a higher affinity to poly(8-oxoG:A). We further confirmed that E. coli PNPase can specifically bind to an oxidized RNA with a high affinity. An E. coli strain deficient in PNPase (pnp) is hypersensitive to hydrogen peroxide (H2O2). Importantly, the level of H2O2-induced RNA damage, measured by the content of 8-hydroxyguanosine, increases significantly in the pnp mutant cells. Consistent with the notion that PNPase plays a direct role in these processes, introduction of the pnp gene encoding E. coli PNPase can restore the viability and RNA oxidation level of the pnp mutant cells in response to H2O2 treatment. Interestingly, degradosome-association is not required for PNPase to protect cell against oxidative stress. PNPase is evolutionary conserved in most of organisms of all domains of life. The human polynucleotide phosphorylase (hPNPase) localizes mainly in mitochondria and plays pleiotropic roles in cell differentiation and has been previously shown to bind 8- oxoG-RNA with a high affinity. Here we show that similar to E. coli PNPase, hPNPase plays an indispensable role in protecting HeLa cells against oxidative stress. The viability in HeLa cell and 8-oxoG levels in RNA are inversely correlated in response to H2O2- treatment. After removal of oxidative challenge, the elevated level of 8-oxoG in RNA decreases, suggesting the existence of surveillance mechanism(s) for cleaning up oxidized RNA. / We have shown that hPNPase may be responsible for the surveillance of oxidized RNA in mammalian cells.Overexpresion of hPNPase reduces RNA oxidation and increases HeLa cell viability against H2O2 insult. Conversely, hPNPase knockdown decreases the viability and increases 8-oxoG level in HeLa cells exposed to H2O2. Taken together, our results suggest that RNA oxidation is a challenging problem for living organisms, and PNPase may play an important role in protecting both prokaryotic and eukaryotic cells by limiting damage to RNA under oxidative stress. / by Jinhua Wu. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
|
140 |
Avaliação do papel de genes envolvidos na mobilização de poli-3-hidroxibutirato em linhagens recombinantes de Escherichia coli. / Evaluation of the role of genes involved in mobilization of poly-3-hydroxybutyrate in recombinant strains of Escherichia coli.Lozano, Gabriela Cazonato 02 December 2013 (has links)
O P3HB é um tipo de poliéster sintetizado por bactérias como reserva de carbono e energia, e mobilizado na escassez destes. Um estudo com mutantes de Burkholderia sacchari, indicou o envolvimento de PhaZa1 e LonA na mobilização de P3HB. Este estudo avaliou o papel de PhaZa1 e LonA neste processo. A complementação heteróloga dos mutantes de B. sacchari, a partir dos genes phaZa1 e lonA de Ralstonia eutropha, restabeleceu a capacidade de mobilização dessas cepas, confirmando o envolvimento de seus produtos no processo. A partir de cepas recombinantes de Escherichia coli, abrigando tanto os genes de acúmulo de P3HB como de mobilização de R. eutropha, obteve-se cepas abrigando os genes phaZa1 e lonA isoladamente e outra abrigando os dois genes simultaneamente. Quando separados, tanto phaZa1 quanto lonA, não apresentaram papel significante na mobilização porém, quando os dois genes são expressos simultaneamente, as taxas de mobilização atingem mais de 50%, indicando que deva ter uma interação entre PhaZa1 e LonA para que o processo de mobilização seja efetivo. / The P3HB is a type of polyester synthesized by bacteria like carbon and energy source, and is mobilizated when there is a shortage of these. A study with mutants of Burkholderia sacchari, showed the involvement of PhaZa1 and LonA in mobilization of P3HB. The present study evaluated the role of PhaZa1 and LonA in this process. The heterologous complementation of mutants of B. sacchari, with phaZa1 and lonA genes from Ralstonia eutropha, reestablished the mobilization capacity in these strains, confirming the involvement of their products in this process. From the recombinant strain of Escherichia coli, harboring accumulation and mobilization genes from R. eutropha, we obtained strains harboring phaZa1 and lonA genes singly and another harboring both genes simultaneously. When expressed singly, both phaZa1 as lonA, had no significant role in mobilization but, when both genes were expressed simultaneously, the rates of mobilization reached more than 50%, appointing that an interaction must occur between PhaZa1 and LonA for the mobilization process to be effective.
|
Page generated in 0.0841 seconds