• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inter-Area Data Exchange Performance Evaluation and Complete Network Model Improvement

Su, Chun-Lien 20 June 2001 (has links)
A power system is typically one small part of a larger interconnected network and is affected to a varying degree, by contingencies external to itself as well as by the reaction of external network to its own contingencies. Thus, the accuracy of a complete interconnected network model would affect the results of many transmission level analyses. In an interconnected power system, the real-time network security and power transfer capability analyses require a ¡§real-time¡¨ complete network base case solution. In order to accurately assess the system security and the inter-area transfer capability, it is highly desirable that any available information from all areas is used. With the advent of communications among operations control center computers, real-time telemetered data can be exchanged for complete network modeling. Measurement time skew should be considered in the complete network modeling when combining large area data received via a data communication network. In this dissertation, several suggestions aiming toward the improvement of complete network modeling are offered. A discrete event simulation technique is used to assess the performance of a data exchange scheme that uses Internet interface to the SCADA system. Performance modeling of data exchange on the Internet is established and a quantitative analysis of the data exchange delay is presented. With the prediction mechanisms, the effect of time skew of interchanged data among utilities can be minimized, and consequently, state estimation (SE) could provide the accurate real-time complete network models of the interconnected network for security and available transfer capability analyses. In order to accommodate the effects of randomly varying arrival of measurement data and setup a base case for more accurate analyses of network security and transfer capability, an implementation of a stochastic Extended Kalman Filter (EKF) algorithm is proposed to provide optimal estimates of interconnected network states for systems in which some or all measurements are delayed. To have an accurate state estimation of a complete network, it is essential to have the capability of detecting bad data in the model. An efficient information debugging methodology based on the stochastic EKF algorithm is used for the detection, diagnosis and elimination of bad data.
2

Processamento de erros grosseiros através do índice de não-detecção de erros e dos resíduos normalizados / Bad data processing through the undetectability index and the normalized residuals

Vieira, Camila Silva 20 October 2017 (has links)
Esta dissertação trata do problema de processamento de Erros Grosseiros (EGs) com base na aplicação do chamado Índice de Não-Detecção de Erros, ou apenas UI (Undetectability Index), na análise dos resíduos do estimador de estado por mínimos quadrados ponderados. O índice UI foi desenvolvido recentemente e possibilita a classificação das medidas de acordo com as suas características de não refletirem grande parcela de seus erros nos resíduos daquele estimador. As medidas com maiores UIs são aquelas cujos erros são mais difíceis de serem detectados através de métodos que fazem uso da análise dos resíduos, pois grande parcela do erro dessas medidas não aparece no resíduo. Inicialmente demonstrou-se, nesta dissertação, que erros das estimativas das variáveis de estado em um sistema com EG não-detectável (em uma medida de alto índice UI) podem ser mais significativos que em medidas com EGs detectáveis (em medidas com índices UIs baixos). Justificando, dessa forma, a importância de estudos para tornar possível o processamento de EGs em medidas com alto índice UI. Realizou-se, então, nesta dissertação, diversas simulações computacionais buscando analisar a influência de diferentes ponderações de medidas no UI e também nos erros das estimativas das variáveis de estado. Encontrou-se, então, uma maneira que destacou-se como a mais adequada para ponderação das medidas. Por fim, ampliaram-se, nesta dissertação, as pesquisas referentes ao UI para um estimador de estado por mínimos quadrados ponderados híbrido. / This dissertation deals with the problem of Gross Errors processing based on the use of the so-called Undetectability Index, or just UI. This index was developed recently and it is capable to classify the measurements according to their characteristics of not reflecting their errors into the residuals of the weighted least squares state estimation process. Gross errors in measurements with higher UIs are very difficult to be detected by methods based on the residual analysis, as the errors in those measurements are masked, i.e., they are not reflected in the residuals. Initially, this dissertation demonstrates that a non-detectable gross error (error in a measurement with high UI) may affect more the accuracy of the estimated state variables than a detectable gross error (error in a measurement with low UI). Therefore, justifying the importance of studies that make possible gross errors processing in measurements with high UI. In this dissertation, several computational simulations are carried out to analyze the influence of different weights of measurements in the UI index and also in the accuracy of the estimated state variables. It is chosen a way that stood out as the most appropriate for weighing the measurements. Finally, in this dissertation, the studies referring to the UI is extended for a hybrid weighted least squares state estimator.
3

Processamento de erros grosseiros através do índice de não-detecção de erros e dos resíduos normalizados / Bad data processing through the undetectability index and the normalized residuals

Camila Silva Vieira 20 October 2017 (has links)
Esta dissertação trata do problema de processamento de Erros Grosseiros (EGs) com base na aplicação do chamado Índice de Não-Detecção de Erros, ou apenas UI (Undetectability Index), na análise dos resíduos do estimador de estado por mínimos quadrados ponderados. O índice UI foi desenvolvido recentemente e possibilita a classificação das medidas de acordo com as suas características de não refletirem grande parcela de seus erros nos resíduos daquele estimador. As medidas com maiores UIs são aquelas cujos erros são mais difíceis de serem detectados através de métodos que fazem uso da análise dos resíduos, pois grande parcela do erro dessas medidas não aparece no resíduo. Inicialmente demonstrou-se, nesta dissertação, que erros das estimativas das variáveis de estado em um sistema com EG não-detectável (em uma medida de alto índice UI) podem ser mais significativos que em medidas com EGs detectáveis (em medidas com índices UIs baixos). Justificando, dessa forma, a importância de estudos para tornar possível o processamento de EGs em medidas com alto índice UI. Realizou-se, então, nesta dissertação, diversas simulações computacionais buscando analisar a influência de diferentes ponderações de medidas no UI e também nos erros das estimativas das variáveis de estado. Encontrou-se, então, uma maneira que destacou-se como a mais adequada para ponderação das medidas. Por fim, ampliaram-se, nesta dissertação, as pesquisas referentes ao UI para um estimador de estado por mínimos quadrados ponderados híbrido. / This dissertation deals with the problem of Gross Errors processing based on the use of the so-called Undetectability Index, or just UI. This index was developed recently and it is capable to classify the measurements according to their characteristics of not reflecting their errors into the residuals of the weighted least squares state estimation process. Gross errors in measurements with higher UIs are very difficult to be detected by methods based on the residual analysis, as the errors in those measurements are masked, i.e., they are not reflected in the residuals. Initially, this dissertation demonstrates that a non-detectable gross error (error in a measurement with high UI) may affect more the accuracy of the estimated state variables than a detectable gross error (error in a measurement with low UI). Therefore, justifying the importance of studies that make possible gross errors processing in measurements with high UI. In this dissertation, several computational simulations are carried out to analyze the influence of different weights of measurements in the UI index and also in the accuracy of the estimated state variables. It is chosen a way that stood out as the most appropriate for weighing the measurements. Finally, in this dissertation, the studies referring to the UI is extended for a hybrid weighted least squares state estimator.

Page generated in 0.1285 seconds