• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 11
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 31
  • 20
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of flour particle size and emulsifiers on quality of cakes made with cake flour of varying extraction

Almana, Hassan Abdulaziz January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
12

Effects of addition of mushroom dietary fiber on the physical properties of bakery and extruded products.

January 2009 (has links)
Cheung, Wing Kwun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 101-116). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / List of Tables --- p.v / List of Figures --- p.viii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Dietary fiber --- p.1 / Chapter 1.1.1 --- Introduction of dietary fiber --- p.1 / Chapter 1.1.2 --- Sclerotia of Pleurotus tuber-regium as a source of dietary fiber --- p.2 / Chapter 1.2 --- Bakery products --- p.3 / Chapter 1.2.1 --- Wheat --- p.3 / Chapter 1.2.2 --- Flour --- p.4 / Chapter 1.2.2.1 --- Flour protein --- p.4 / Chapter 1.2.2.2 --- Rheological test of flour quality --- p.5 / Chapter 1.2.3 --- Bread --- p.8 / Chapter 1.2.3.1 --- Ingredient --- p.8 / Chapter 1.2.3.2 --- Bread-making process --- p.10 / Chapter 1.2.4 --- Crackers and cookies --- p.12 / Chapter 1.2.5 --- Effect of addition of dietary fiber in bakery products --- p.14 / Chapter 1.3 --- Extrusion cooking --- p.18 / Chapter 1.3.1 --- Introduction of extrusion cooking --- p.18 / Chapter 1.3.2 --- Food extruders --- p.19 / Chapter 1.3.3 --- Application of extrusion --- p.21 / Chapter 1.3.4 --- Extrusion of starchy materials --- p.23 / Chapter 1.3.5 --- Effect of extrusion dietary fiber content --- p.24 / Chapter 1.3.6 --- Effect of extrusion on other nutritional properties --- p.26 / Chapter 1.4 --- Objectives --- p.28 / Chapter 2 --- Materials and Methods --- p.29 / Chapter 2.1 --- Mushroom powder --- p.29 / Chapter 2.2 --- Flour --- p.29 / Chapter 2.2.1 --- Crude protein content --- p.29 / Chapter 2.2.2 --- Moisture content --- p.30 / Chapter 2.2.3 --- Farinograph --- p.30 / Chapter 2.3 --- Bakery products --- p.31 / Chapter 2.3.1 --- Bread --- p.31 / Chapter 2.3.2 --- Crackers --- p.33 / Chapter 2.3.3 --- Cookies --- p.35 / Chapter 2.4 --- Extrudates --- p.36 / Chapter 2.5 --- Physical measurement --- p.37 / Chapter 2.5.1 --- Bread --- p.37 / Chapter 2.5.1.1 --- "Weight, volume and density" --- p.37 / Chapter 2.5.1.2 --- Hardness --- p.38 / Chapter 2.5.2 --- Crackers --- p.40 / Chapter 2.5.2.1 --- "Weight, dimensions and thickness" --- p.40 / Chapter 2.5.2.2 --- Volume --- p.40 / Chapter 2.5.2.3 --- Hardness --- p.40 / Chapter 2.5.2.4 --- Moisture --- p.41 / Chapter 2.5.3 --- Cookies --- p.42 / Chapter 2.5.3.1 --- "Weight, thickness and diameter" --- p.42 / Chapter 2.5.3.2 --- Hardness --- p.42 / Chapter 2.5.4 --- Extrudates --- p.43 / Chapter 2.5.4.1 --- Expansion ratio --- p.43 / Chapter 2.5.4.2 --- Density --- p.43 / Chapter 2.5.4.3 --- Hardness --- p.43 / Chapter 2.5.4.4 --- Water absorption index (WAI) --- p.43 / Chapter 2.5.4.5 --- Water solubility index (WSI) --- p.44 / Chapter 2.6 --- Dietary fiber content --- p.44 / Chapter 2.6.1 --- Preparation of samples --- p.44 / Chapter 2.6.2 --- "Total dietary fiber (TDF), Insoluble dietary fiber (IDF) and Soluble dietary fiber (SDF)" --- p.45 / Chapter 2.6.3 --- Protein and ash correction --- p.46 / Chapter 2.7 --- Nutritional evaluation of extrudates using rat model --- p.47 / Chapter 2.7.1 --- Determination of crude protein content in extrudates --- p.47 / Chapter 2.7.2 --- Diet preparation --- p.47 / Chapter 2.7.3 --- Feeding experiments --- p.50 / Chapter 2.7.4 --- Nitrogen balance experiment --- p.50 / Chapter 2.7.5 --- Determination of serum lipid profile --- p.51 / Chapter 2.7.5.1 --- Serum total triglyceride (TG) --- p.51 / Chapter 2.7.5.2 --- Serum total cholesterol (TC) --- p.51 / Chapter 2.7.5.3 --- Serum high-density lipoprotein cholesterol (HDL-C) --- p.52 / Chapter 2.8 --- Statistical analysis --- p.53 / Chapter 3 --- Results and Discussion --- p.54 / Chapter 3.1 --- MP-enriched flours --- p.54 / Chapter 3.1.1 --- Crude protein content of plain flour --- p.54 / Chapter 3.1.2 --- Moisture content of plain flour --- p.55 / Chapter 3.1.3 --- Farinograph of MP-enriched flours --- p.56 / Chapter 3.2 --- Physical characteristics of MP-containing bakery products --- p.59 / Chapter 3.2.1 --- MP-enriched bread --- p.59 / Chapter 3.2.1.1 --- "Weight, volume and density" --- p.59 / Chapter 3.2.1.2 --- Hardness --- p.61 / Chapter 3.2.2 --- MP-enriched crackers --- p.63 / Chapter 3.2.2.1 --- "Weight, dimensions and thickness" --- p.63 / Chapter 3.2.2.2 --- Volume --- p.65 / Chapter 3.2.2.3 --- Hardness --- p.66 / Chapter 3.2.3 --- MP-enriched cookies --- p.68 / Chapter 3.2.3.1 --- "Weight, thickness and diameter" --- p.68 / Chapter 3.2.3.2 --- Hardness --- p.70 / Chapter 3.2.4 --- Extrudates of MP-enriched pastry flour --- p.71 / Chapter 3.2.4.1 --- Expansion ratio --- p.71 / Chapter 3.2.4.2 --- Density --- p.75 / Chapter 3.2.4.3 --- Hardness --- p.75 / Chapter 3.2.4.4 --- Water absorption index (WAI) --- p.78 / Chapter 3.2.4.5 --- Water solubility index (WSI) --- p.80 / Chapter 3.2.4.6 --- Effect of extrusion condition on physical attributes of extrudates --- p.81 / Chapter 3.3 --- Dietary fiber content in MP-containing bakery products --- p.87 / Chapter 3.3.1 --- MP-enriched bread --- p.87 / Chapter 3.3.2 --- MP-enriched crackers --- p.88 / Chapter 3.3.3 --- MP-enriched cookies --- p.89 / Chapter 3.3.4 --- Extrudates produced form MP-enriched pastry flour --- p.90 / Chapter 3.4 --- Nutritional evaluation of extrudates using rat model --- p.93 / Chapter 3.4.1 --- Weight of animals --- p.93 / Chapter 3.4.2 --- Weight of vital organs --- p.93 / Chapter 3.4.3 --- Nitrogen balance experiment --- p.94 / Chapter 3.4.4 --- Serum lipid profile --- p.96 / Chapter 4 --- Conclusion --- p.98 / Chapter 5 --- References --- p.101
13

Reformulation packaging studies to delay staling in a bakery product

Assouad, Marie-Christine January 1996 (has links)
Bakery products are important sources of nutrients in our diet. However, spoilage occurs shortly after baking. After microbial spoilage, the main spoilage problem is staling. / Therefore, methods to control staling are of great importance to the bakery industry since staling results in millions of dollars annually in lost revenues. / Initial studies using a one variable at a time approach showed that enzymes, guar, algin and pectin gums and high fructose corn syrup could delay staling and resulted in an organoleptically acceptable product. Subsequent optimization studies using a Response Surface Methodology (RSM) approach show the appropriate levels of enzyme (Novamyl), guar gum and HFCS resulted in bagels with a textural and sensorial shelf life of 6 weeks at ambient temperature. / Furthermore, the cost of reformulating ($ sim$0.5 cent/bagel) is minimal and could easily be recovered through reduced production costs, reduced losses due to staling and additional sales and market areas.
14

Control of Bacillus cereus in English-style crumpets

El-Khoury, Wassim. January 2001 (has links)
English-style crumpets (pH 6--8, aw 0.97--0.99) are a popular baked product enjoyed by consumers worldwide. However, over the past few years, outbreaks of food poisoning have been caused by the growth of Bacillus cereus in crumpets. This spore forming microorganism, which originates in flour, can easily survive the baking process and grow to >106 CFU/g within 3--5 days at ambient storage temperature. Therefore, control of this pathogen is essential to ensure the safety and marketability of English-style crumpets. / Initial studies were done to determine the effect of water activity ( aw), pH, modified atmosphere packaging (MAP), UV-light, bacteriocins, organic acids and esters, alone and in conjunction with each other, on the growth of B. cereus in model broth/agar systems. / B. cereus is a difficult microorganism to control in food using conventional preservation methods. Further studies are now under way to investigate novel methods to control the growth of this pathogen, particularly in high pH crumpets. (Abstract shortened by UMI.)
15

Novel methods to control the growth of Bacillus cereus in English-style crumpets

Koukoutsis, John January 2002 (has links)
Bacillus cereus has been responsible for several food poisoning outbreaks involving high moisture-high pH (aw ~ 0.98, pH ~ 8.8) English-style crumpets. Two novel methods, involving sorbohydroxamic acid (SHA) and mastic essential oil (MO), were evaluated for their potential to inhibit the growth of this pathogen and other selected spoilage and foodborne pathogens in high moisture, high pH English-style crumpets. / While sorbic acid only controlled the growth of B. cereus at pH 5 and 5.5, SHA proved effective at all pHs and concentrations under investigation. MO also failed to inhibit the growth of B. cereus when added directly to agar plates. / Products were unacceptable when counts increased from 103 CFUIg to 106 CFU/g or sensory scores reached <3 on a scale of 5. Only SHA (0.3% w/w) proved effective in high pH crumpets. (Abstract shortened by UMI.)
16

The effect of whole grain rye flour arabinoxylans on the physical and chemical characteristics of a low moisture baked good

Beaver, Michelle Denine, January 2010 (has links)
Thesis (Ph. D.)--Rutgers University, 2010. / "Graduate Program in Food Science." Includes bibliographical references (p. 122-127).
17

Control of Bacillus cereus in English-style crumpets

El-Khoury, Wassim. January 2001 (has links)
No description available.
18

Novel methods to control the growth of Bacillus cereus in English-style crumpets

Koukoutsis, John January 2002 (has links)
No description available.
19

Reformulation packaging studies to delay staling in a bakery product

Assouad, Marie-Christine January 1996 (has links)
No description available.
20

Impact of ingredients on quality and sensory characteristics of gluten-free baked goods

Gustafson, Kara L. January 1900 (has links)
Master of Science / Food Science Institute / Delores Chambers / The rising awareness of celiac disease, an intestinal intolerance to gluten, has increased the demand for gluten-free products. Gluten is a protein that provides structure to breads, cakes, cookies, and other wheat-flour based baked goods. When flour and water are combined and mixed, the proteins glutenin and gliaden present in wheat combine and a network of gluten is formed. In addition to providing structure and elasticity to dough, it also traps air within the matrix and allows baked goods to rise and maintain desirable characteristics such as an open and airy crumb structure and chewiness of bread products. Removing gluten from a baked good formulation affects the finished product in many ways. This review examines research conducted on the effects of many various ingredients on finished product quality of gluten-free baked goods. Quality parameters that are most greatly affected by the exclusion of gluten in baked goods include specific volume (a measure of the amount of air incorporated into the finished product), height, spread ratio (the ratio of diameter to thickness in cookies and like products), color, and hardness. Gluten-free baked goods are recognized to be denser, shorter in height, have a larger spread, have a different color, and be harder in texture than traditional wheat-based baked goods. Various gluten-free ingredients have been studied for their use in producing a finished product that exhibits quality parameters similar to wheat-based baked goods. These include rice, potato, tapioca, corn, and sorghum; pseudocereals such as buckwheat, amaranth, and quinoa; legumes; nuts; and waste from fruit and vegetable processing. The inclusion of additives such as hydrocolloids, protein concentrates, emulsifiers, and acidic ingredients are extensively utilized and studied in gluten-free baked good applications. Gluten-free baked goods commonly have a reduced shelf life as compared to wheat-based products. The weak association of water with the starches present in gluten-free baked goods allows moisture to migrate to the outside of the product and rapidly escape. Shelf life studies are also included in much of the research and are summarized in this review. Because consumers desire gluten-free products that taste like the gluten-containing products they replace, many studies pertaining to gluten-free ingredient research include sensory analysis. Some studies include a wheat-based product as a control, while others use only gluten-free formulations in the research. Future research using better sensory methods are needed in this product category. Food manufacturers who wish to compete in the still growing gluten-free market have many ingredient resources available to them to produce high quality gluten-free baked goods. Through research conducted on alternative flours, starches, hydrocolloids, emulsifiers, and other ingredients, gluten-free consumers can enjoy baked goods that exhibit the same desirable qualities as traditional wheat-flour based products.

Page generated in 0.0317 seconds