• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 18
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 29
  • 19
  • 18
  • 18
  • 13
  • 13
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Síntese e caracterização ferroelétrica de compósitos cerâmicos planares de BaTiO3/BaTi1-xZrxO3 / Synthesis and ferroelectric characterization of planar BaTiO3/BaTi1-xZrxO3 ceramic composites

Thiago Martins Amaral 12 June 2015 (has links)
Compósitos cerâmicos planares de titanato zirconato de bário, BaTi1-xZrxO3, foram produzidos e os efeitos da quantidade de Zr4+ em suas propriedades funcionais foram estudados. As amostras foram fabricadas pelo método convencional de processamento cerâmico e pela técnica de deposição de fitas cerâmicas a partir de BaTi1-xZrxO3 com x=0, 0,05, 0,1, 0,15 e 0,2 sintetizados pelo método hidrotermal e pelo método dos precursores poliméricos. Foram realizadas caracterizações estrutural (difração de Raios X pelo método do pó e espectroscopia Raman), composicional (espectroscopia por dispersão de energia), microestrutural (microscopia eletrônica de varredura, ensaios de dilatometria) e funcional (permissividade elétrica, coeficiente piezoelétrico d33, coeficiente piroelétrico e histerese ferroelétrica). Além disso, a regra da mistura de fase foi utilizada para prever a permissividade elétrica dos compósitos e as tensões mecânicas internas e seus efeitos na permissividade elétrica e na temperatura de Curie de policristais de BaTiO3 foram simulados. As análises dos dados e as discussões foram realizadas considerando o modelo fenomenológico de Devonshire, a modificação de Forsbergh deste modelo para incluir efeitos de tensões mecânicas bidimensionais e o modelo de policristal tetragonal de BaTiO3 sugerido por Buessem. Os resultados mostram a existência de tensões residuais bidimensionais que surgem após o resfriamento dos compósitos devido às diferenças nos coeficientes de expansão térmica das fases constituintes. Os métodos de obtenção das amostras afetaram o tamanho final dos grãos e as espessuras das interfaces dos compósitos, sendo que, em geral, eles são menores e mais finos nas fitas cerâmicas homogêneas do que nas correspondentes cerâmicas homogêneas. Os compósitos apresentaram deslocamento da Tc para maiores temperaturas e aumento do grau de difusividade da transição. A presença das tensões mecânicas residuais e as características microestruturais, juntamente com os modelos utilizados, explicam qualitativamente a permissividade elétrica obtida. Concluí-se que a quantidade de Zr4+ modifica o comportamento das camadas durante a sinterização e altera o coeficiente de dilatação. Estas mudanças geram tensões mecânicas residuais que afetam a microestrutura e as propriedades funcionais dos compósitos. Portanto, a produção de compósitos cerâmicos ferroelétricos deve considerar a correlação existente entre microestrutura e tensões residuais para que suas propriedades sejam otimizadas. / Planar BaTi1-xZrxO3 ceramic composites had their functional properties investigated. These composites were obtained by the conventional ceramic processing technique and by tape casting technique. Furthermore, BaTi1-xZrxO3 x=0, 0.05, 0.1, 0.15 and 0.2 were synthesized by the polymeric precursors method and by the hydrothermal synthesis to study the synthesis influences and to study the effect of Zr4+ on the functional properties of the composites. Structural characterization (X-Ray powder diffraction and Raman spectroscopy), compositional analysis (energy dispersive X-Ray spectroscopy), microestrutural evaluation (scanning electron microscopy, dilatometry measurements) and functional properties characterization (electrical permittivity, piezoelectric coefficient d33, pyroelectric coefficient and ferroelectric hysteresis) were performed. Furthermore, the composites electrical permittivity was predicted by the simple mixture and the internal mechanical stress distribution and it´s effects on both, electrical permittivity and Curie´s temperature (Tc) of BaTiO3 polycrystals, were simulated. The analyses and discussions were supported by 1- Devonshire´s phenomenological theory, 2- Forsbergh´s modification to Devonshire´s theory to include the two-dimensional stress effects on Tc and 3- Buessem´s BaTiO3 tetragonal polycrystal model. The results show that the sintered composites present two-dimensional residual stresses after cooling due to the constrained sintering of the layers and their thermal expansion coefficient mismatch. The methods of sample preparation led to differences in grain size and interface thickness, with the homogeneous ceramic tapes presenting smaller grain sizes and thinner thickness than the conventional homogeneous ceramics. On the other hand, the composites showed a Tc shift to higher temperatures, a more diffuse phase transition and residual mechanical stresses. Concluding, the Zr4+ substitution of Ti4+ modifies the layer´s sintering behavior and their thermal expansion coefficient. These changes lead to microstructure modifications that affect the functional properties of planar BaTi1-xZrxO3 composites. Thus, the design of ferroelectric composites should take into consideration the correlations between microstructure and residual stresses in order to optimize their functional properties.
12

Fabrication and characterisation of electrospun polyvinylidene fluoride (PVDF) nanocomposites for energy harvesting applications

Song, Hang January 2016 (has links)
Three systems of electrospun composite membranes with piezoelectric polymer polyvinylidene fluoride (PVDF) as matrix incorporating: 1) Carbon based fillers: carbon nanotube (CNT) and graphene oxide (GO); 2) Ceramic based fillers-barium titanate (BT), zinc oxide (ZnO) and nanoclays (halloysite and bentonite); 3) Cellulosic fillers: microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) at different loadings were prepared by electrospinning process. Influence of filler type and loading on total PVDF crystallinity (Xc), relative fraction of β phase (piezoelectric phase) in total crystalline PVDF (Fβ), volume fraction of β phase in the samples (vβ) and piezoelectric coefficient d33 were characterised and analysed. Correlation between vβ and piezoelectric performance (d33) will be focused by this work. A common situation was observed for the composites-d33 increased while vβ is reduced by the fillers, so it can be concluded that d33 of the composites is not totally up to their vβ, there are other factors that need to be taken into account. For example, for carbon based filler like CNT, it increased electric conductivity of sample during and after electrospinning process, making it easier for charges produced by β crystals from inside of sample to be transferred to surfaces of the sample, and possibly promoting orientation of β crystals in d33 direction, therefore enhanced d33 of the composites though β phase formation was significantly hindered by inclusion of CNT; For piezoelectric ceramic fillers like BT and ZnO, a possible combined piezoelectricity from filler and β phase PVDF might enhanced d33 though less β phase was formed; And for non-piezoelectric and non-conductive fillers, enhancement in orientation of β crystals might play a major role in promotion of d33. Keywords: electrospinning; polyvinylidene fluoride (PVDF); nanocomposites; piezoelectric coefficient d33; energy harvesting.
13

Nanosized alkaline earth metal titanates: effects of size on photocatalytic and dielectric properties

Demydov, Dmytro V. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Kenneth J. Klabunde / A new approach to synthesize nanosized strontium titanate (SrTiO3) and barium titanate (BaTiO3) has been developed. Nanocrystals of mixed metal oxide were synthesized by a modified aerogel procedure from alkoxides. The textural and surface characteristic properties were studied by nitrogen BET analysis, transmission electron microscopy, and powder XRD. The crystallite sizes of aerogel prepared powders can vary from 6 to 25 nm by the use of different solvents. A mixture of ethanol and toluene was found to be the best binary solvent for supercritical drying, which produced a SrTiO3 sample with a surface area of 159 m2/g and an average crystallite size of 8 nm, and a BaTiO3 sample with a surface area of 175 m2/g and an average crystallite size of 6 nm. These titanates have been studied for photocatalytic oxidation of volatile organic compounds and acetaldehyde (CH3CHO) in particular. The big band gaps of the bulk (3.2 eV for SrTiO3 and 3.1 eV for BaTiO3) limit their application to a UV light region only. The modification of titanates by doping with transition metal ions (partial substitution of Ti ions with metal ions) creates a valence band or electron donor level inside of the band gap, narrows it, and increases the visible light absorption. The enhanced adsorption of visible light was achieved by the synthesis of nanosized SrTiO3 and BaTiO3 by incorporating Cr ions during the modified aerogel procedure. Gaseous acetaldehyde photooxidation has been studied on pure SrTiO3 and BaTiO3, and on chromium doped Cr-SrTiO3 and Cr-BaTiO3 under UV and visible light irradiation, and compared with the photoactivity of P25 TiO2. SrTiO3 doped with antimony/chromium shows absorption in visible light and show photocatalytic activity for CH3CHO oxidation. The reason for the codoping of SrTiO3 with Sb/Cr was to maintain the charge balance and to suppress oxygen defects in the lattice. This photocatalyst shows high photoactivity under visible light irradiation even after several continuous runs. The photoactivity under visible and UV light irradiation was almost identical for the Sb/Cr-SrTiO3 photocatalyst. Dielectric properties of aerogel prepared barium titanate samples have being studied and the bulk resistance values of AP-BaTiO3 were significantly lower than that of commercial BaTiO3, by several orders of magnitude.
14

Nanostructures de titanate de Baryum : modélisation,simulations numériques et étude expérimentale. / Barium Titanate Nanostructures : modelling, numerical simulations and experiments.

Thorner, Gentien 28 November 2016 (has links)
Des simulations numériques conduites sur un ferroélectrique, le Titanate de Baryum, permettent d'extraire les températures où se produisent les transitions pour chacune des composantes et elles utilisent le plus souvent des conditions limites périodiques. Cependant, il est possible de modifier la simulation de manière à rendre compte d'une particule isolée, et les conditions limites électriques de type court-circuit ou bien circuit ouvert affectent alors le résultat. Réduire la taille accorde encore davantage d'importance à de tels effets de surface par rapport aux effets de volume. Expérimentalement, la formation de nanocubes creux ou de nanotores a été observéelors de synthèses solvothermales. De possibles mécanismes de morphogénèse sont évoqués. Dans ce travail, les simulations ont ensuite été conduites sur des particules nanométriques, dont les formes avaient été obtenues expérimentalement. Pour des cubes creux, il a été constaté que la taille de l'inclusion vide modifiait la valeur du coefficient d'écrantage critique à partir duquel le comportement de la polarisation passe d'une configuration de type court-circuit à une configuration de type circuit fermé. Pour des nanotores aux basses températures, une modification du rapport entre petit et grand rayon donne lieu à des configurations possédant un moment toroïdal seul ou accompagné d'un moment hypertoroïdal voire d'oscillations de ce dernier. / Numerical simulations performed on a ferroelectric, Barium Titanate, yield all the transition temperatures under periodic boundary conditions. However, the same simulation can be modified to model an isolated particle under short-circuit or opencircuit electrical boundary conditions. Reducing size makes these surface effects even more important with regard to volume effects.From an experimental point of view, solvothermal synthesis of hollow nanocubesand nanotori is reported and various morphogenesis mechanisms are listed.In this work, simulations were performed on nanometric particles that had experimentally obtained shapes. In hollow cubes, it was shownthat the hole size changed the numerical value of the critical screening coefficient at which the system changes its behavior from aconfiguration that is short-circuit like to another one that is open-circuit like. For nanotori at low temperatures, a modification of the ratio between torus minor and major radius gives either configurations with only toroidalmoment or configurations in which it coexists with homogeneous or oscillating hypertoroidal moment.
15

Ferroelectric Oxides For Neuromorphic Computing and Hardware Assurance

Mayersky, Joshua 23 August 2022 (has links)
No description available.
16

Investigating Ferroelastic and Piezoelectric Vibration Damping Behavior in Nickel-Barium Titanate and Nickel-PZT Composites

Asare, Ted Ankomahene 22 October 2007 (has links)
Ferroelectric and piezoelectric ceramic reinforced metal matrix composites are new materials being explored for vibration damping purposes. The high damping ability of ferroelectric and piezoelectric ceramics such as barium titanate (BaTiO3) and lead zirconate titanate (PZT) is due to the anelastic response of ferroelastic domain walls to applied external stress. In piezoelectric ceramics, vibration energy can also be dissipated through the direct piezoelectric effect if the appropriate electric circuit is connected across the ceramic. In this work we have examined the vibration damping behavior of BaTiO3, nickel-barium titanate (Ni-BaTiO3) composites and nickel-lead zirconate titanate (Ni-PZT) composites. BaTiO3 ceramics were fabricated by a combination of uniaxial pressing and cold isostatic pressing followed by sintering in air. Low frequency (0.1Hz-10Hz) damping capacity of BaTiO3, tanδ has been measured in three-point bend configuration on a dynamic mechanical analyzer. Tanδ has been found to increase with temperature up to the Curie temperature (Tc) of BaTiO3, after which there was a drop in damping capacity values due to the disappearance of ferroelectric domains above Tc. Furthermore within the frequency range tested, tanδ has been found to decrease with increasing vibration frequency. We also observed that tanδ decays with the number of vibration cycles (N). The decrease in tanδ with N, however, is fully recovered if BaTiO3 is heated above the Tc. Ni-BaTiO3 composite composed of a layer of BaTiO3 ceramic sandwiched between two layers of Ni were fabricated using a combination of electroless plating and electroforming. The damping behavior of the composite was analyzed in terms of the damping mechanisms below Tc and the damping mechanisms above Tc of BaTiO3. Below Tc, vibration damping ability of the composite was highly influenced by ferroelastic damping in the BaTiO3 component. Above the Curie temperature, the damping capacity was influence more by the inherent damping mechanisms in the nickel matrix. The damping mechanisms in Ni-PZT composites were evaluated at a low vibration frequency of 1Hz. In these composites we identified ferroelastic domain wall motion as the main damping mechanism active below the Tc of PZT. Using a poled PZT ceramic enhanced the damping capacity of the composite because of favorable ferroelastic domain orientation in the direction of applied stress. Based on our experimental results, we found no evidence of a direct piezoelectric damping mechanism in the Ni-PZT composites. / Ph. D.
17

Fabrication And Damping Behavior Of Particulate BaTiO3 Ceramic Reinforced Copper Matrix Composites

Asare, Ted Ankomahene 06 December 2004 (has links)
Metal matrix composites offer unique opportunities for achieving multi-functionality in materials. In an attempt to investigate the possibility of enhancing damping characteristics of structural metals, copper was reinforced with tetragonal ferroelectric BaTiO3 particulates (Cu-BaTiO3 composites) using powder metallurgy techniques. The effect of particulate size and three processing conditions, sintering atmosphere, cooling rate and, uniaxial compaction pressure on the tetragonality and hence the ferroelectric properties of barium titanate powder were investigated using differential scanning calorimetry (DSC) and x-ray diffraction (XRD). The results show that sintering atmosphere and cooling rates have little effect on the tetragonality of barium titanate powder. Tetragonality of barium titanate powder decreased gradually with decreasing particle size. The decrease in tetragonality with decreasing particle size, however, was only severe in the very fine powders. Although no direct relationship was found between uniaxial compaction pressure and tetragonality, uniaxial pressure may also decrease the tetragonality of barium titanate. Three Cu-BaTiO3 composites, D1, D2 and D3 reinforced with 40vol% barium titanate particles of average sizes 209μm, 66μm and 2μm were respectively fabricated. The retention of the ferroelectric tetragonal phase of barium titanate after composite processing was confirmed by DSC. Composite microstructures observed using optical and scanning electron microscopy revealed uniform dispersions of barium titanate particles in D1 and D2. In D3, the barium titanate formed a chain-like structure because of extensive agglomeration of the fine reinforcement particles. Damping characteristics of the composites were evaluated between 25oC and 165oC at a frequency of 1Hz using dynamic mechanical analysis (DMA). The relative damping capacities (tanδ) in the composites were higher than the unreinforced metal. The damping capacity of composites D1 and D2 was also found to be dependent on temperature. Damping capacity was high from room temperature up to the Curie point of barium titanate, after which there was a slight drop in damping values probably due to a loss in ferroelectric properties. The small drop in damping values recorded in excess of the Curie temperature is an indication that ferroelectricity contributes little to the overall damping capacity of the Cu-BaTiO3 composites. This results from either a reduced ferroelectric damping in barium titanate particles or, poor stress transfer from matrix to reinforcement because of the weak and porous copper-barium titanate interface. / Master of Science
18

An Ising-like model to predict dielectric properties of the relaxor ferroelectric solid solution BaTiO₃ − Bi(Zn₁/₂Ti₁/₂)O₃ / An Ising-like model to predict dielectric properties of the relaxor ferroelectric solid solution BaTiO3 - Bi(Zn1/2Ti1/2)O3

Jackson, Dennis L. 01 December 2011 (has links)
We developed a model to investigate the dielectric properties of the BaTiO₃ − Bi(Zn₁/₂Ti₁/₂)O₃ (BT-BZT) solid solution, which is a relaxor ferroelectric and exhibits long range disorder. The model uses ab initio methods to determine all polarization states for every atomic configuration of 2 x 2 x 2 supercells of BT-BZT. Each supercell is placed on a lattice with an Ising-like interaction between neighboring cell polarizations. This method allows us to consider long range disorder, which is not possible with ab initio methods alone, and is required to properly understand relaxor ferroelectric materials. We analyze the Monte Carlo data for a single lattice configuration using the multiple histogram method, and develop a modified histogram technique to combine data from multiple lattice configurations. Our calculated values of dielectric constant, specific heat, and polarization agree reasonably well with experiment. / Graduation date: 2012
19

Development of High Capacitance Films for Electrical Energy Storage Using Electrophoretic Deposition of BaTiO3 on Ultrasonically Etched Ni

Harari, Berkan 13 October 2012 (has links)
High capacitance devices were developed using rapid electrophoretic deposition (EPD) of barium titanate (BaTiO3) on ultrasonically etched nickel (Ni) substrates. The microstructural and electrical properties of films with varying thicknesses, sintering temperatures and substrate etching times were investigated to study their effect on the capacitance. Although increasing the capacitance was the primary goal, decreasing manufacturing costs and reducing environmental impact was also considered. After confirming the tetragonality and particle size of a 0.2 µm hydrothermal powder, it was dispersed in an aqueous-organic mixture of ethanol, acetone and water. A zeta potential of 50 mV was observed at the EPD pH level (6.8). Flocculation or coagulation was not likely in this situation. Therefore, mixing water with an organic solution was an effective method for reducing environmental impact while maintaining deposition quality. The presence of BaCO3 in the films was proven using X-ray diffraction. Other impurities such as TiO2 and NiO were not detected. A significant variation in the average grain size was not observed for films with different thicknesses whereas films sintered at different temperatures displayed greater variation. A bimodal pore size distribution in the samples suggested that the powder was agglomerated after deposition due to a high deposition voltage (20 V). Rapid deposition times of 2 to 8 seconds offered a potential for cost reduction compared to longer deposition times implemented in industry. Therefore the increased porosity was accepted. The dielectric constant of the films increased from 2900 to 6730 as the thickness increased from 17.75 µm to 47.5 µm. The dissipation factor decreased from 0.27 to 0.06 with increasing thickness. This behavior was attributed to a low dielectric constant interfacial layer and a higher dielectric leakage current at smaller thicknesses. The dielectric constant increased from 1700 to 6350 and the dissipation factor decreased from 0.23 to 0.04 as the sintering temperature increased from 1150°C to 1300°C. This was attributed to an increase in tetragonality with grain size and a decrease in porosity with sintering temperature. Finally, etching a substrate for 60 seconds increased its capacitance by 27.47% and using ultrasonic agitation further increased the capacitance by 8.75%. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-10-12 00:54:53.915
20

Síntese, caracterização e modificação superficial de nano partículas de titanato de bário produzidas pelo método Pechini. / Synthesis, characterization and surface modification in barium titanate nano particles by Pechini method.

Brito, Silvio Luiz Miranda 08 April 2009 (has links)
A síntese de nano partículas e a sua caracterização tem sido a grande mola propulsora do desenvolvimento de materiais nano-estruturados. Pouca atenção tem sido dedicada aos fenômenos físico-químicos relacionados às enormes superfícies intrínsecas destes materiais. Dentre eles, o titanato de bário ocupa uma posição de destaque devido ao seu grande potencial na geração de produtos de alta tecnologia. Neste estudo o BaTiO3 foi sintetizado pelo método Pechini que proporciona a geração de nanopartículas de grande uniformidade química. Contudo, o uso de cátions que formam carbonatos de alta estabilidade pode inviabilizar o uso do método. Os pós de titanato de bário preparados apresentaram elevada área de superfície específica, mas formação de fases parasitas de carbonato de bário e em algumas estequiometrias de ortotitanato de bário e carbonatos adsorvidos à superfície do titanato de bário. O estudo sistemático da química de superfície e da estrutura cristalina do material permitiu a proposta de um método de lixiviação em meio ácido onde as fases parasitas foram eliminadas e um material nanométrico de grande potencial de aplicação foi obtido com as seguintes características: fase com simetria tetragonal predominante ~95% (apesar da coexistência de fase cúbica ~5%); tamanho de cristalito ou partícula primária de 44 nm; área de superfície específica igual a 13,4 m2/g e D(BET) de 74 nm; está isento de contaminação de carbonatos ou outra fase; relação estequiométrica de Ba/Ti = 0,96 -> Ba0,98Ti1,02O3. / The synthesis and characterization of Nanoparticles has been a great topic for nanostructured materials developments. The Relationship between Physicochemical phenomena and large surface area has had a little attention. The barium titanate has a great potential of high-tech products generation. In this work, the BaTiO3 was prepared by polymeric precursor method because this method generates a great chemical uniformity in nanoparticles. However, cations that form carbonates of high-stability may compromise this method use. The barium titanate powder was prepared and showed high specific surface area, but this powder has barium carbonate and ortotitanato contamination. The systematic surface chemistry and crystal structure study suggest an acid leaching method to contaminant phases eliminated. A nanomaterial of great potential for application was obtained with the following characteristics: tetragonal phase predominant ~95% (cubic phase coexist ~5%); crystallite size of 44 nm; surface area of 13,4 m2/g and Particle size (estimated BET) of 74 nm; carbonate free; Ba/Ti = 0,96 -> Ba0,98Ti1,02O3.

Page generated in 0.4465 seconds