Spelling suggestions: "subject:"barrier coating"" "subject:"carrier coating""
71 |
Environmental Degradation Of Oxidation Resistant And Thermal Barrier Coatings For Fuel-flexible Gas Turbine ApplicationsMohan, Prabhakar 01 January 2010 (has links)
The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na2SO4 and a Na2SO4 + V2O5 mixture (50-50 mol. %) demonstrated that Na2SO4 itself did not degrade the YSZ, however, in the presence of V2O5, Na2SO4 formed vanadates such as NaVO3 that degraded the YSZ through YVO4 formation at temperature as low as 700°C. The APS YSZ was found to react with the P2O5 melt by forming ZrP2O7 at all temperatures. This interaction led to the depletion of ZrO2 in the YSZ (i.e., enrichment of Y2O3 in t' -YSZ) and promoted the formation of the fluorite-cubic ZrO2 phase. Above 1250°C, CMAS deposits were observed to readily infiltrate and significantly dissolve the YSZ coating via thermochemical interactions. Upon cooling, zirconia reprecipitated with a spherical morphology and a composition that depended on the local melt chemistry. The molten CMAS attack destabilized the YSZ through the detrimental phase transformation (t - > t - > f + m). Free standing APS CoNiCrAlY was also prone to degradation by corrosive molten deposits. The V2O5 melt degraded the APS CoNiCrAlY through various reactions involving acidic dissolution of the protective oxide scale, which yielded substitutional-solid solution vanadates such as (Co,Ni)3(VO4)2 and (Cr,Al)VO4. The molten P2O5, on the other hand, was found to consume the bond coat constituents significantly via reactions that formed both Ni/Co rich phosphates and Cr/Al rich phosphates. Sulfate deposits such as Na2SO4, when tested in encapsulation, damaged the CoNiCrAlY by Type I acidic fluxing hot corrosion mechanisms at 1000°C that resulted in accelerated oxidation and sulfidation. The formation of a protective continuous Al2O3 oxide scale by preoxidation treatment significantly delayed the hot corrosion of CoNiCrAlY by sulfates. However, CoNiCrAlY in both as-sprayed and preoxidized condition suffered a significant damage by CaSO4 deposits via a basic fluxing mechanism that yielded CaCrO4 and CaAl2O4. The CMAS melt also dissolved the protective Al2O3 oxide scale developed on CoNiCrAlY by forming anorthite platelets and spinel oxides. Based on the detailed investigation on degradation of the APS YSZ and CoNiCrAlY by various corrosive deposits, an experimental attempt was carried out to mitigate the melt-induced deposit attack. Experimental results from this study demonstrate, for the first time, that an oxide overlay produced by electrophoretic deposition (EPD) can effectively perform as an environmental barrier overlay for APS TBCs. The EPD protective overlay has a uniform and easily-controllable thickness, uniformly distributed closed pores and tailored chemistry. The EPD Al2O3 and MgO overlays were successful in protecting the APS YSZ TBCs against CMAS attack and hot corrosion attack (e.g., sulfate and vanadate), respectively. Furnace thermal cyclic oxidation testing of overlay-modified TBCs on bond-coated superalloy also demonstrated the good adhesive durability of the EPD Al2O3 overlay.
|
72 |
Πρόβλεψη μη γραμμικής συμπεριφοράς και διάδοσης ρωγμής σε συνθήκες θερμομηχανικής κόπωσης με τη μέθοδο των συνοριακών στοιχείωνΚέππας, Λουκάς 16 June 2011 (has links)
Τα δομικά στοιχεία των μηχανολογικών κατασκευών υπόκεινται σε επαναλαμβανόμενες κυκλικές καταπονήσεις, από τις οποίες δημιουργούνται και διαδίδονται ρωγμές. Οι καταπονήσεις αυτές, οι οποίες προκαλούν κόπωση στις κατασκευές, μπορεί να είναι είτε καθαρά μηχανικές είτε θερμικές ή να προκύπτουν σα συνδυασμός θερμικής και μηχανικής φόρτισης. Τυπικές περιπτώσεις θερμικών και θερμομηχανικών φορτίσεων εμφανίζονται σε κατασκευές, όπως σωλήνες κυκλωμάτων ψύξης, πιεστικά δοχεία, συνιστώσες ηλεκτρικών κυκλωμάτων, θάλαμοι μηχανών εσωτερικής καύσης και πτερύγια στροβιλοκινητήρων. Η κυκλική μεταβολή του θερμικού φορτίου στις προαναφερθείσες περιπτώσεις, συνιστά συνθήκες θερμικής κόπωσης. Επίσης, λόγω της σχετικά υψηλής συχνότητας του φορτίου η θερμοκρασία παρουσιάζει έντονη μεταβολή στο χώρο και στο χρόνο.
Ο προσδιορισμός της διάρκειας ζωής ενός δομικού στοιχείου κατά τη φάση του σχεδιασμού μπορεί να γίνει με τη βοήθεια πειραματικών διαδικασιών. Τα πειράματα όμως κόπωσης είναι δαπανηρά και χρονοβόρα και προφανώς απαιτούνται περισσότερες από μια πειραματικές δοκιμές. Οπότε, είναι εύλογο να υπάρχουν υπολογιστικά εργαλεία που να δίνουν τη δυνατότητα στο μηχανικό να εκτιμήσει την διάρκεια ζωής ή τη σοβαρότητα της βλάβης ενός εξαρτήματος. Τα περισσότερα υπολογιστικά μοντέλα αναφέρονται σε καθαρά μηχανικές καταπονήσεις. Έτσι υπάρχει πρόσφορο έδαφος για την ανάπτυξη υπολογιστικών εργαλείων για την ανάλυση προβλημάτων θερμικής και θερμομηχανικής κόπωσης. Τέτοιου είδους εργαλεία θα πρέπει να λαμβάνουν υπόψη το κλείσιμο των ρωγμών, που συμβαίνει λόγω των θερμικών παραμορφώσεων, διότι είναι δυνατόν να επηρεάζεται τοπικά το θερμοκρασιακό πεδίο. Επομένως, χρειάζεται επαναληπτική διαδικασία για τον προσδιορισμό του θερμικού και τασικού πεδίου που αλληλεπιδρούν. Είναι προφανές ότι η ανάλυση της θερμικής κόπωσης εξελίσσεται σε συνθέτη διαδικασία, που θα πρέπει να συμπεριλαμβάνει τον υπολογισμό της κατανομής της θερμοκρασίας, την τοπική επίδραση του άκρου της ρωγμής στο τασικό πεδίο καθώς και την επαφή των επιφανειών της ρωγμής. Η μέθοδος των συνοριακών στοιχείων είναι ικανή να αντιμετωπίζει τέτοιου είδους τοπικές επιδράσεις. Η παρούσα διατριβή επικεντρώνεται στην ανάπτυξη υπολογιστικού εργαλείου βασισμένου στα συνοριακά στοιχεία, για την πρόβλεψη της διάδοσης ρωγμών και την εκτίμηση της διάρκειας ζωής, εξαρτημάτων υπό θερμική και θερμομηχανική κόπωση. Έμφαση δίνεται σε περιπτώσεις που το θερμικό φορτίο προκαλεί κλείσιμο της ρωγμής και σε περιπτώσεις διεπιφανειακών ρωγμών, όπου το θερμοκρασιακό πεδίο επηρεάζεται από την θερμική αντίσταση ανάμεσα στις επιφάνειες της ρωγμής.
Στο πρώτο κεφάλαιο γίνεται βιβλιογραφική ανασκόπηση σε εργασίες που εστιάζουν σε φαινόμενα κόπωσης και διάδοσης ρωγμών, καθώς και στην ανάπτυξη υπολογιστικών μοντέλων για την πρόβλεψη της διάδοσης ρωγμών. Επιπλέον, προσδιορίζεται λεπτομερώς το αντικείμενο της παρούσας διατριβής και εξηγείται η συνεισφορά της και τα καινοτόμα σημεία της. Στο δεύτερο κεφάλαιο περιγράφεται η ιδιόμορφη συμπεριφορά του άκρου της ρωγμής, δίνονται οι διατυπώσεις των μεγεθών θραύσης που χρησιμοποιούνται στην ανάλυση της κόπωσης και αναφέρονται τρόποι με τους οποίους μελετάται η διάδοση ρωγμών. Στο τρίτο κεφάλαιο περιγράφονται λεπτομερώς οι ολοκληρωτικές συνοριακές διατυπώσεις για την επίλυση προβλημάτων θερμοελαστικότητας. Στο τέταρτο κεφάλαιο περιγράφονται οι υπολογιστικές διαδικασίες που ακολουθούνται στην παρούσα εργασία για τον προσδιορισμό του πεδίου θερμοκρασιών και μετατοπίσεων, καθώς και ο τρόπος που προσομοιώνεται η διάδοση ρωγμής. Στο πέμπτο κεφάλαιο παρατίθενται τα αποτελέσματα που προέκυψαν από τις αναλύσεις για διάφορες περιπτώσεις, ενώ στο έκτο κεφάλαιο εξάγονται συμπεράσματα και διατυπώνονται προτάσεις για μελλοντική έρευνα. / The prediction of fatigue life is essential for the integrity and reliability of a structure when designing engineering components that undergo cyclic loading. In most cases, the mechanical cyclic loads are taken into account in order to evaluate the life and damage tolerance of structures with existing cracks. However, there exists a category of structures that experience severe thermal cycling that acts alongside the mechanical loads. Such structures include cooling system pipes, pressure vessels, pistons and combustion chambers of internal combustion engines, gas turbine blades and components of electrical circuits.
Interfacial crack growth is of paramount importance when designing components that are protected by thermal barrier coatings in order to increase their endurance and efficiency. These types of structures are exposed to very intense thermo-mechanical cycling, which gradually causes delamination and eventually leads to spallation of the coating Numerical simulations, via the finite element method, are a common trend, when analysing the endurance of coated components. However, important aspects such as the heat exchange between the contacting faces and friction are not taken into account in fracture assessments of these components.
The boundary element method is very attractive for crack-growth analyses because only the boundary is meshed, rather than the whole domain of the problem. In the present thesis, the boundary integral equations of uncoupled, time-dependent thermo-elasticity are employed to account for the time-varying nature of the thermal load. Our study discusses the influence of crack closure on quasi-static, sub-critical crack extension in the presence of thermo-mechanical cyclic loading. Appropriate thermal and mechanical boundary conditions are imposed on the numerical model to account for the contact state. The validity of the code to compute the temperature distribution under thermal cycling is checked through analytical solutions. Afterwards, a pure mode-I and mixed mode fracture problems in homogeneous material are analysed and the results are compared to other boundary element solutions. The singularity resulting from tractions and heat flux around the crack tip is effectively captured by singular quarter-point elements, while the fracture magnitudes can be computed using appropriate traction formulas. In these problems, the fatigue life is evaluated in terms of load cycle when the crack closure is considered. The number of cycles required for an existing crack to grow a certain length can be empirically predicted using the Paris’ law. The crack extension angle is evaluated by means of the maximum circumferential stress. The results are discussed, clearly indicating the impact of crack closure on fatigue life evaluation. The main conclusion is that crack closure should be incorporated into the analysis whenever the contact effect is inevitable. Otherwise, the fatigue life may be underestimated, leading to a conservative design.
Finally, the sub-domain boundary element procedure is applied to interfacial cracks where the crack closure is more pronounced. Specifically, a case of a thermal barrier coating system is investigated. The thermal resistance between the contacting crack faces is incorporated into the procedure and it is assumed to be dependent on the contact pressure. If crack closure due to thermal distortion takes place, then the displacement and traction field may affect the heat flux between the crack faces, and the thermal and mechanical parts of the problem will need to be solved repeatedly until thermo-mechanical convergence is achieved. The results suggest that there are significant effects on the behaviour of stably growing cracks and the evaluation of failure capacity, emanating from crack closure, the amount of thermal resistance and the phase angle between the mechanical and thermal loads.
|
73 |
Příprava a strukturní stabilita nanokrystalických tepelných bariér / Processing and Structural Stability of Nanocrystalline Thermal Barrier CoatingsJech, David January 2018 (has links)
Complex thermal barrier coating systems are one the most efficient high-temperature surface treatments which open up practical applications in land-based turbines and air jet engines. In the case of most exposed rotor and stator jet engine components, the combination of thermal barrier coatings together with the inner cooling system made it possible to increase working temperature by several tens of degrees of Celsius. Nevertheless, it is very difficult to achieve any further increase in working temperature by using the conventional thermal barrier coatings based on the ZrO2-Y2O3 ceramic top coat and the MCrAlY metallic bond coat, which currently work at their material limits. The working temperature inside the combustion chamber of the jet engine is proportional to engine’s efficiency and inversely proportional to fuel consumption and production of undesirable CO2 emission. Therefore, a considerable effort has recently been devoted to research and development of new types of ceramic coatings that can withstand long term extreme working conditions. New design approaches of multi-layer composite thermal barrier coating systems can sustain the required trend of increasing working temperature of jet engines mainly because of possibility of optimization of high-temperature durability and long lifetime. The theoretical part of thesis provides a fundamental overview of thermal barrier coatings, their properties, deposition technologies and testing methods. The experimental part is focused on optimization of deposition parameters of conventional ZrO2-Y2O3 / MCrAlY thermal barrier coatings prepared by means of atmospheric plasma spraying. Furthermore, a novel multi-layer thermal barrier coating system based on ZrO2-Y2O3-Al2O3-SiO2 / ZrO2-Y2O3 / MCrAlY, which contains amorphous and/or nanocrystalline regions, is developed, tested and characterized as well. Structural stability, phase transformations and growth of the thermally grown oxide in both conventional and experimental systems after high-temperature isothermal oxidation, cyclic oxidation and burner-rig tests were evaluated by means light microscopy, scanning electron microscopy with energy-dispersive microanalysis and X-ray diffraction. In comparison with the conventional thermal barrier coatings, the novel multi-layered systems have lower thermal conductivity, slower thermally grown oxide kinetic, better structural stability, and generally higher lifetime in all high-temperature tests.
|
74 |
Optimalizace podmínek dvojitého přetavení elektronovým paprskem v procesu přípravy TBC povlaků / Optimizing the conditions of double electron beam remelting in the process of preparing TBCHroš, Michal January 2019 (has links)
Thermal barrier coatings (TBCs) are commonly used for thermal protection of components in modern gas turbine application and typically consisting of ceramic top coat and CoNiCrAlY bond coat (BC), both thermally sprayed. Nanostructured CoNiCrAlY bond coatings were deposited onto Ni-based alloy (Inconel 718) by both HVOF and CGDS spraying techniques. Subsequently the deposits were remelted by electron beam up to depth of about 100 m which resulted in removal of defects on the substrate to the bond coat interface. The primary objective of this thesis was to investigation of the influence of parameters used for EB remelting, including multiple remelting on the microstructural changes, phase modification and final state of the coatings. The amount of porosity in the coatings and surface roughness has been evaluated. Scanning electron microscopy and X-Ray diffraction were performed in order to characterize the phase modification before and after the applied treatment. The results indicated that multiple remelting process improved the coating properties in terms of porosity, smooth surface, strength and chemical homogeneity and at last but not least this study demonstrate that low-temperature processing of CoNiCrAlY bond coat represents an interesting and promising alternative for their manufacturing.
|
75 |
Struktura a vlastnosti tepelných bariér typu YSZ nanesených na krycí vrstvy CoNiCrAlY přetavené elektronovým paprskem / Microstructure and properties of YSZ thermal barier coatings deposited onto CoNiCrAlY bond coats remelted by electron beamSlavíková, Barbora January 2019 (has links)
The master thesis is dealing with characterization of the structure and properties of the YSZ thermal barrier coating deposited by water hybrid plasma spray technology on the CoNiCrAlY bond coats modified by using electron beam and vacuum annealing. Deposition of the bond coats was performed via high velocity oxy-fuel technology and cold spray. In case of experimental evaluation, the microstructure and chemical composition of the ceramic top coat deposited with powder and suspension feedstock was analyzed. The same analysis procedure was used also for bond coats after electron beam remelting by using two sets of parameters. Furthermore, the changes in microstructure and chemical composition of the remelted and annealed bond coats was evaluated. Eventually, the micromechanical properties of the top coats and the bond coats were measured. The ceramic top coats deposited with powder feedstock exhibited the structure composed by splats, while the top coats deposited in form of suspension showed fine structure with columnar grains. The dendritic structure was observed on remelted bond coats. The annealing process had an influence on the structure in form of coarsened phases and the chemical composition was changed due to diffusion of the elements.
|
76 |
<b>Pushing the Limit of High-Temperature Thermal Metamaterials</b>Ali R Jishi (19190992) 22 July 2024 (has links)
<p dir="ltr">Thermal Barrier Coatings (TBC) represent the key technology enabling greater efficiency and performance in jet engines and gas turbines. In modern engines, TBCs allow gas temperatures to exceed 1700°C, well above the point at which the structural alloys lose their strength. By insulating the underlying nickel-alloy components from the extreme heat generated during combustion, TBCs support a larger temperature gradient. </p><p dir="ltr">As operating temperatures are further increased to improve performance, thermal radiation becomes a more substantial carrier of heat. However, conventional TBCs are designed to provide a single barrier against only the phonon-mediated conductive heat flux, leaving the photonic radiative heat transfer largely unmitigated. We propose a Thermal Dual Barrier Coating (TDBC) to simultaneously suppress the phononic and photonic heat transfer by integrating a reflective thermal metamaterial into an independent phonon-optimized TBC.</p><p dir="ltr">The main obstacle to achieving the TDBC is in the selection of adequate reflective materials in the metamaterial. Conventional refractory metals that demonstrate the greatest stability and functionality in thermal metamaterials show instability under harsher environments. In our work, we identified and studied the key ideas, metrics, and challenges in metamaterials based on alternating layers of refractory metals and oxides for TDBC applications.</p><p dir="ltr">Our work emphasizes oxidation as a crucial degradation factor that is unavoidable in our assessment of the metamaterials. In formulating this problem, we bring the concept of oxidation-resistance through passivation to the forefront of material selection. We emphasize the passivative and oxidative properties of the metallic layer as a critical determinant in overall stability. In our work, we assess the enhancements in stability brought via passivation through the Pilling-Bedworth Ratio. We then propose the use of metal silicides in metamaterials as an overlooked class of oxidation-resistant IR reflective materials that operate through a more complex passivation method. We demonstrate strong stability in the structural integrity as well as the infrared responses of the metamaterials at up to 1200°C in atmospheric and oxidative environments.</p><p dir="ltr">After establishing the viability of metal silicides in wide-area thin films, we explore their viability in more complex thermal structures. We fabricate metal silicide metasurfaces for directional thermal emission. We demonstrate a grating structure that exhibits enhanced structural stability and maintains directional modes in the mid-IR after annealing at 1000°C.</p>
|
77 |
Micro-scale Fracture Testing of Graded (Pt,Ni)Al Bond CoatsNagamani Jaya, B January 2013 (has links) (PDF)
PtNiAl bond coats are diffusion aluminide coatings deposited on superalloy based turbine blades for oxidation resistance and improved adhesion between the substrate and the YSZ thermal barrier coating on top. They are deposited by pack aluminisation, which makes their microstructure inherently graded and heterogeneous as well as replete with a variety of precipitates and second phase particles. The microstructure also continuously evolves during thermal cycling, because of interdiffusion with the substrate and the continuous loss of Al to the thermally grown oxide scale on top. During service, the bond coats are exposed to impact, thermal expansion mismatch, thermo-mechanical fatigue and inter-diffusion accompanied by phase transformation, which become leading causes of their failure. The bond coats being B2 crystal structures are known to be brittle at room temperature, due to which they are expected to fail during cooling, although they undergo plastic relaxation by creep above the BDTT. Little attention has been paid to the mechanical response of the bond coats, while a number of studies focus on optimizing their composition for oxidation resistance. The fracture properties of these coatings, in particular, are not very well understood due to the several different length scales of their complex microstructure playing a part. In this context, there is an interest in determination of the fracture toughness of bond coats under different loading and temperature conditions.
In the present work, the fracture properties of bond coats is measured with micron-scale resolution using edge notched doubly clamped microbeam structures positioned at individual zones of the graded bond coat, subjected to bending. In order to extract the stress intensity factor for this new configuration and to determine the stress distribution and stability of this geometry under different loading conditions, extended finite element analysis (XFEM) is carried out. After establishing the microbeam geometry as a viable fracture toughness testing configuration, the contribution of different microstructural variables to toughening at room temperature is studied using SEM based in-situ testing. Since the exact composition and structure of the coating depends principally on the elements constituting the matrix-Pt, Ni and Al content, which themselves depend on the deposition parameters, we have examined in detail, coatings aluminised at different temperatures (increasing coating thickness), varying Al content in the pack mixture and starting Pt thicknesses during electro-deposition. These parameters are by no means exhaustive and there is wide scope to investigate the effect of other processing variables as well as their synergistic effects on the mechanical behavior of these coatings. Following this, the high temperature fracture behavior of the stand-alone coatings in tension is also studied to determine their brittle to ductile transition mechanism in the presence of a notch. While this covers the average behavior of the entire coating cross-section, such a study is important to establish the BDTT unambiguously since there are chances of under-estimation of these temperatures in the absence of a notch. Also free¬standing coatings without the underlying substrate offer respite from residual stresses influencing the results of such tests. The present study essentially consists of two distinct parts, one focused on the development of the testing technique to cover multiple length scales of any graded thin film or coating and the other on the determination of fracture properties of the bond coat using these methods. The thesis reads in the following way:
Chapter 1 gives an introduction to the diffusion aluminised bond coats, with a focus on the failure mechanisms associated with them while underlying the need for small scale testing in these systems. The conditions driving failure in bond coats can be vast and varied and it is extremely difficult to pin-point a single important cause and also to develop predictive capabilities regarding their failure. This is described as the motivation for the present work, with an objective of finding the variation in fracture toughness values for PtNiAl bond coats of different coating thicknesses and Pt content across the temperature range spanning the BDTT of the sample.
Chapter 2 describes in detail all the available literature on thermal barrier coatings in general, and diffusion aluminide bond coats in particular, while specifically highlighting its mechanical response to loads during service. The deposition parameters during pack aluminizing and the graded microstructure which develops as a consequence of the diffusion process are described. The material’s microstructure dictates its properties, but there has been limited work on the mechanical behavior of the coatings themselves due to the difficulty in preparation and testing of free-standing films of the same. Since the base matrix is that of β¬NiAl, and there has been extensive work reported on bulk NiAl in the literature, which is discussed next. This would serve as a benchmark for comparison with the properties of the bond coats themselves, which are expected to respond differently due to their continuously evolving and complex microstructure. A summary of the known mechanical properties of the coatings themselves is given next along with the failure mechanisms that have been proposed. Since the study deals with fracture properties, a short introduction of linear elastic fracture mechanics follows before elaborating on the various small scale fracture testing geometries that have been developed. There are specific differences between testing geometries, stress states as well as in the instrumentation between small scale and bulk fracture toughness tests, which are highlighted. Since these configurations are material and device specific, each group has worked out its own instrument capabilities and mechanics required to extract the mechanical properties of interest from these testing techniques. Due to these differences in addition to the differences in the size scales of the samples tested, the reported properties show a wide variation. Lack of standards add to the difficulty in interpretation of the data; moreover add to the controversy on whether a size effect exists for fracture, as it does for strength. All the non-standard small scale testing configurations require modeling and simulation to extract the desired properties from them, and the present study applies the XFEM to determine the stress distribution and calculate the stress intensity factors corresponding to the fracture loads recorded from experiments. An introduction to the XFEM method is given in the last part.
Chapter 3 gives all the experimental and simulation procedures that were carried out in the present work. Since the bond coat properties need to be compared with their bulk counterparts, both the samples are characterized. The exact material compositions chosen for the study were plain NiAl, 2PtAl and 5PtAl among the pack aluminized coatings and bulk arc-melted PtNiAl samples with varying concentrations of Ni and Pt which matched the bond coat matrix compositions. The choice of the three coatings was made depending on the previously known information regarding their microstructure. The deposition conditions, temperature and times of annealing are listed, followed by a brief summary of the general characterization techniques used to study the microstructure of the bond coats before and after fracture testing. Since the micro-beams under bending were fabricated using a focused ion beam, and the micro-tensile specimen were machined by electro-discharge machining, both the micro-machining procedures are described. At such small length scales, conventional testing methods cannot be used and several modifications were incorporated to the testing geometries which are described in the next section which covers two principal fracture testing methods-microbeam bending and mini-tensile testing, along with the advantages and limitations of each. Modeling is an indispensable tool for determining stress distributions in such new geometric configurations involving material property variations, and details of the exact XFEM procedure that was implemented in ABAQUS is given in the last part of this chapter.
Chapter 4 summarises the microstructure and indentation properties of the bond coat and bulk NiAl samples characterised using X-ray diffraction, electron microscopy and nanoindentation. XRD was used for phase identification, texture and determination of lattice parameters of the specimen, which confirmed β-NiAl (with no texture) as the matrix with the lattice parameter varying as a function of composition. The SEM-EPMA combination was used for probing the compositional and microstructural gradients, grain size and precipitate distribution across the coating cross-sections. The bond coat was found to have 4 distinct zones with the Ni:Al ratio gradually rising across its thickness. In addition to this, the four zones had very different grain sizes, precipitate type and distributions. Hardness and modulus values were reported from nanoindentation measurements across the coating thickness over a temperature range from 25 to 400˚C and were seen to follow the composition gradients in different ways based on the effect of the off-stoichiometric defects on these properties. The hardness was found to be a minimum for the zone with stoichiometric composition, as was the case in the bulk sample, while the modulus dropped continuously with increasing Ni content in the matrix. These are important to develop a one-to-one correlation with the fracture properties and to understand the micro-mechanisms of the same.
Chapter 5 gets on with the specifics of the testing geometry. Since most of the variables of the testing technique were studied using simulation procedures, a large part of this chapter deals with the results from the modeling technique using XFEM. The XFEM is introduced in detail and its applicability in modeling of cracks and discontinuities and advantages over conventional FEM are explained. The material properties are taken from the nanoindentation data and the modeling assumes linear elastic fracture mechanics. As a validation measurement, a conventional three point beam is modeled in bending and the results compared with analytical solutions of the same. The three point beam bending geometry is also used as a benchmark to study the stability of the new geometry, now with fixed boundaries in place of a free ends. This is followed by the results from the modeling for different variables like mesh density, notch root radius, loading offsets, beam dimensions and crack length (a)/specimen width (W) ratios where both the stress distribution as well as KI are captured in 3-D for stationary cracks while crack trajectories are obtained for propagating cracks. The notch root radius is seen to not affect KI below ~300 nm and such notch radii are easily machinable in the FIB at lower currents. The crack trajectory from the experiments is seen to follow the direction of maximum tangential stress, which is also modeled very well in the XFEM. The contribution of KII to the measured stress intensity factor with increasing offsets is also calculated from the model. Stable cracking is seen for the clamped beam geometry, with KI dropping off beyond a critical a/W ratio. This was true even for a model assuming homogeneous, elastic properties with a flat R-curve under load control. This makes the clamped beam structure require higher loads for continued propagation of cracks. This critical ratio is dimension dependent, making a shorter thicker beam stable in comparison to a longer, slender one. This is unusual, especially in comparison to the three point bend geometry which shows stable cracking only in displacement control, specifically for large a/W ratios alone. Also superimposition of the load-displacement curves from simulations with those of experiments gives a good-fit. The experimental results are shown next to back¬up the claims made on geometric stability of such clamped structures. Digital Image Correlation is introduced as a means for direct measurement of crack opening displacements (COD) and fracture toughness without the aid of KI formulations. This also served as a cross¬check on the assumptions of linear elastic fracture mechanics (LEFM) made in the simulation and a good correlation is seen between the CODs measured experimentally and that obtained from the FEM analysis. Fracture toughness measurements of brittle materials with known KIC values, like fused silica glass and single crystal Si film from this proposed geometry are reported as additional validation of this geometry. Further the capabilities of in-situ testing using this geometry to measure R-curve and fatigue properties along with the initiation KIC values are shown via results from monotonic and cyclic loading under different conditions.
Chapter 6 returns to address bond coat fracture at room temperature, which is the main objective of the present study. Fracture toughness is evaluated both ex-situ and in-situ, using clamped microbeam bending experiments across individual zones of the 5PtAl bond coat and for different initial Pt contents in the zone 2. KIC is seen to rise sharply with increasing Ni content of the matrix in the former case, from 5 to 15 MPam1/2 which is attributed to the change in defect chemistry with changing stoichiometry. Al rich NiAl is found to be more brittle due to vacancy hardening while Ni rich NiAl is known to increase the metallic character of the NiAl bond. Both Ni rich and Pt rich (Pt,Ni)Al give higher toughnesses among the coatings studied while the crack trajectories and toughening mechanisms distinctly depend on the precipitate morphology in individual zones. Alloying additions are seen to add to the complexity of the fracture behavior of bond coats by strengthening the matrix or by improving its ductility. Micro-kinking, grain boundary and precipitate bridging are seen in the crack wake as contributing factors to partial closure of the crack on unload. The influence of each of the microstructural variable on the fracture mode is dissected in detail before coming to an overall conclusion. The microbeams show controlled, stable cracking, which enable following of the crack trajectories across micron-length scales and make R-curve measurements possible. Both 2PtAl and 5PtAl compositions show a rising R-curve within the length scale of an individual microbeam tested. Size and geometric effects on real vs apparent R-curve behavior are discussed at the end of the chapter.
Chapter 7 addresses a different area of high temperature fracture of bond coats, which becomes relevant in terms of determination of brittle to ductile transition temperature (BDTT) in notched specimen and in evaluating topography after failure across this temperature range. This set of tests is designed to measure fracture toughness and study the fracture mode along the temperature scale to exactly identify the BDTT for a given bond coat composition and strain rate, below which the coating undergoes brittle catastrophic fracture and beyond which it creeps and relaxes plastically at very low stresses. Notched free¬standing bond coat specimens are pulled in uni-axial tension to fracture and the stress at failure is used to calculate the average fracture toughness of the bond coat. The stress-strain curve shows linear elastic behavior upto the BDTT of the bond coat as expected, beyond which it becomes increasingly plastic. The KIC is seen to rise marginally upto 750˚C beyond which it showed a significant increase, from which the BDTT was calculated to be ~775˚C for notched samples. The KIC is not reported beyond the BDTT due to irrelevance of LEFM after macroscopic plasticity sets in. Fracture mode is seen to change from transgranular cleavage below the BDTT to void coalescence and ductile rupture beyond it. The experimental challenges, differences in the through thickness KIC’s obtained from tensile tests vis a vi bend tests (due to changing stress states and size scales), as well as mechanisms of ductile to brittle transition in the context of previously available literature are discussed.
Chapter 8 gives the closure and important conclusions from the present work. It summarises the key results from the testing technique and highlights the proposed mechanisms which bring about a rising fracture toughness with both increasing Ni:Al ratio across the bond coat cross-section and across individual micro-beams themselves. Some new techniques and geometries which can be adopted for fracture property determination, on which work was initiated but not complete, are also proposed. The last part of the chapter deals with the future implications of the results found and some open threads and challenges on bond coat optimisiation for different properties, which are yet to be dealt with.
|
78 |
RESIDUAL STRESS AND MICROSTRUCTURAL EVOLUTION OF COMPOSITES AND COATINGS FOR EXTREME ENVIRONMENTSJohn I Ferguson (17582760) 10 December 2023 (has links)
<p dir="ltr">A current engineering challenge is to understand and validate material systems capable of maintaining structural viability under the elevated temperature and environmental conditions of hypersonic flight. One aspect of this challenge is the joining of multiple materials with thermal expansion mismatch, which can lead to residual stress, resulting in debits in component lifetime under in-service loading. The focus of this work is a series of studies focused on a ceramic-metal composite (WC/Cu), a zirconia coating applied to a carboncarbon (C/C) composite, and a silicide (R512E) coating applied to a Nb-based alloy (C103). Each of these material systems are candidates for elevated temperature applications in which dissimilar constituents result in residual stress in the material. Each study leveraged experimental residual strain measurements, with the primary focus on the use of synchrotron X-ray diffraction, in conjunction with representative models, and microscopy to illuminate the active mechanisms in the development and evolution of residual stress in the bulk material. The combination of experimental and modeling predictions provides a framework to inform the viability and lifing of material systems exhibiting dissimilar expansion properties.</p>
|
Page generated in 0.1076 seconds