• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Green barrier materials from cellulose nano fibers

Sharma, Sudhir 07 January 2016 (has links)
Renewable, recyclable, and high performing barrier materials were made from cellulose nano fibers. Various strategies to enhance performance in dry, wet and humid conditions were proposed. These methods included thermal treatment to induce hornification, PAE resin based cross linking, and inclusion of high aspect ratio filler materials to form composites. Results indicated that hornification alone, even though effective in enhancing the barrier properties comes at the cost of severe degradation of mechanical properties. In the second case, where a cross linker was used, lower heating temperature limited the degradation of mechanical properties. Moreover, the new bonds included due to cross linking also modified the mechanical properties of the material and cause significant improvement. In the case of inclusion of filler materials, improvement of mechanical properties due to reinforcing effect was observed, and additionally the improvement in barrier properties was observed due to increased tortuosity of the materials. Furthermore, when the composites were made with cross linker, there was a significant improvement in barrier and mechanical properties as compared to the barrier material made from the pure cellulose nano fibers. In all cases the barrier materials were found to be resistant to degradation by water, as measured by water retention value, and surface contact angle. The resistance to water in the first case was as a result of severe hornification of the material. Whereas in the second and third case the cross linking and concomitant limited hornification played a significant role in water resistance. In addition to the three methods to improve barrier properties, the use of nano fibers made from cellulose II was also studied. Different stages of fibrillation of the starting cellulose pulps were studied and the fibers and films made from them were characterized in detail. Results from this study indicated that fibers made from cellulose II pulp are much harder to fibrillate as compared to cellulose I fibers. Moreover, due to fibril aggregation it is harder to form nano fibers from cellulose II. Even though from the perspective of better inter and intra fibril bonding cellulose II might be favorable over cellulose I, significant work in the formation of nano fibers from cellulose II is required before they can be used for making barrier materials.
2

Polymer/Clay Nanocomposites as Barrier Materials Used for VOC Removal

Herrera-Alonso, Jose M. 30 September 2009 (has links)
The objective of this study was to determine if the method of incorporation of a silicate layered nanoclay into a polymer matrix can affect the barrier properties of the pristine polymer in order to decrease the transport of volatile organic compounds (VOC) in indoor air. Building materials are a primary source for VOCs. These emissions are a probable cause of acute health effects and discomfort among occupants and are known to diminish productivity. The predicted concentrations of several of the VOCs emitted by structural insulated panels (SIP) are of concern with respect to health and comfort of occupants. The main issue related to the barrier membranes is the dispersion properties of the nanoclays in the polymer matrix, and the generation of a tortuous pathway that will decrease gas permeation. The tortuous pathway is created by a nanoclay filler, whose ideal exfoliated structure has high surface area, and high aspect ratio. By choosing the appropriate surfactants, the nanoclays can be modified to allow improved molecular interactions between the nanoclay and the polymer matrix. Several studies were performed in order to evaluate the dispersion properties of the nanoclay in the polymer matrix. Polymer/clay nanocomposites barrier membranes were generated via different synthesis methods. In the first study, barrier membranes were composed of a polyurethane, Estane ® 58315, and different nanoclays, Cloisite ® 10A, Cloisite ® 20A, Cloisite ® 30B. The interaction of the polyurethane and the different surfactants used to organically modify the nanoclay was evaluated. The dispersion of the clay platelets was analyzed by varying the pre-processing method; sonication vs stirring. The decrease in gas permeability results was enhanced by the effect of pre-processing via sonciation in comparison to plain stirring. These results also suggest that nanoclay platelets modified with alkylammonium groups with one tallow tail Cloisite ® 10A and Cloisite ® 30B, allow better dispersion and penetration of the polymer within the basal spacing of the nanoclays. Once the decrease in gas permeability was confirmed, the next challenge was to study and evaluate the performance of the polyurethane/clay nanocomposites barrier membranes in the determination of diffusivity coefficients for volatile organic compounds (VOCs). This was achieved via gravimetric sorption characterization. This method allowed for characterization of the sorption and desorption phenomena of VOC in barrier membranes. Barrier membranes pretreated with sonication demonstrated lower diffusivity coefficients than those only treated with stirring. At high clay loadings, 50 wt% of nanoclay in the polymer, the decrease in diffusivity coefficients for VOCs such as butanol and toluene, was found to be one order of magnitude. Other VOCs such as decane and tetradecane also showed a significant decrease in diffusivity coefficient. The results for VOC sorption studies suggest that there is some variability. In order to enhance the exfoliation of the clay, we decided to examine in situ polymerization of poly (n-butyl methacrylate) in the presence of nanoclay. In this study the clay wt% was kept at a low concentration of 1-5 wt%. The surface modification of natural montmorillonite, Cloisite ® Na+, was achieved via ion exchange, and the effect of pre-processing was also explored. The modification rendered a tethered group on the surface of the clay that was able to react with the monomer/oligomer chains and thus expand and exfoliate the clay platelets. Gas permeation data suggest that sonication also produced better barrier properties than its counterpart stirring. XRD diffractograms also confirmed exfoliation of the clay platelets in the poly (n-butyl methacrylate) polymer matrix. Thermogravimetric analysis (TGA) suggested that exfoliation of the clay platelets led to improved thermal stability by increasing the decomposition temperature of the membranes. A small increase in Tg also suggested restricted segmental chain motion within the clay platelets. Overall gas permeation decreased even at low clay content. Phenomenological models such as those of Cussler and Nielsen were used to model the experimental permeation results. These models suggest that although the aspect ratio of the clay platelets is within the specifications provided by the manufacturer, it does not reflect the ideal behavior of the models. The last step of this work was to achieve exfoliation of the modified nanoclay platelets via emulsion polymerization of poly (n-butyl methacrylate). The clay concentration in the emulsion was kept the same as in the in situ polymerization. DLS results suggest a uniform distribution of the polymer/clay nanocomposites particles in the emulsion. Permeation data indicated higher permeation values than the in situ method of synthesis of the nanocomposite membranes. This led us to explore the use of glassy co-polymer of poly(n-butyl methacrylate)-poly(methyl methacrylate) as the matrix. The addition of a more glassy component in the polymer matrix led to improved barrier properties of the nanocomposite membranes. As expected, the copolymer had a higher Tg than the PMMA polymer. Analysis via phenomenological models, also suggested that the chemistry of the co-polymer played an important role in decreasing gas permeability within the polymer/clay nanocomposite membranes, although the effect of the glassy component in the matrix was not quantified by the phenomenological models. / Ph. D.
3

Interdiffusion Study Of Mg-aa6061 System

Fu, Mian 01 January 2013 (has links)
Magnesium (Mg) is a light-weight metal that has extraordinary physical and chemical properties for many potential applications in automobile, military, and electronics. Aluminum alloys, because of its light-weight, high strength and corrosion resistance have a wide range of commercial applications. Given these two, sometime competing, alloy systems, there are now many applications where the metallurgical compatibility of Mg- and Al-alloys are required for engineering applications. One such case is the development of diffusion barrier for U-Mo metallic fuel in Al-alloy cladding, where Mg, with its complete immiscibility with U and Mo is being considered as the diffusion barrier. While negligible diffusional interaction between Mg and U-Mo alloys have been reported, diffusional interaction between the Mg and Al-alloy cladding has not been investigated. In this study, solid-to-solid diffusion couples were assembled using discs of pure Mg (99.999 %) and AA6061 Al-alloy. After preparation, Mg was diffusion bonded to AA6061 in sealed quartz capsule at 300°, 350°, and 400°C for 720, 360, and 240 hours, respectively. Scanning electron microscopy was used to inspect the interdiffusion zone, while phase identification was performed using X-ray energy dispersive spectroscopy. One specific phase that exists in the binary Mg-Al system, labeled “ε” was observed and characterized by transmission electron microscopy. From the preceding data, the growth rates as well as interdiffusion coefficients of the intermetallic phases were extracted and compared to previous investigations using pure Mg and Al.
4

Propriétés barrières de structures hybrides. Application à l'encapsulation des cellules solaires / Barrier properties of hybrid structures - Application to solar cells encapsulation

Morlier, Arnaud 18 October 2011 (has links)
Les matériaux utilisés pour diverses applications en électronique organique ou photovoltaïque denouvelle génération subissent des dégruvent être encapsulés à l’aide de matériaux barrière àl’oxygène et à l’eau. Pour l’encapsulation des cellules photovoltaïques organiadations sous les effets conjugués de l’eau et de l’oxygène. Afinde limiter cette dégradation, ces dispositifs peques, les perméabilités àl’eau (WVTR) et à l’oxygène (OTR) de l’encapsulant ne doivent pas excéder 10-3 g.m-2.j-1 et 10-3cm3.m-2.j-1 respectivement.L’objectif de ce travail de thèse est l’étude et l’élaboration par voie humide d’une structuremulticouche hybride organique/inorganique flexible, transparente et barrière aux gaz ainsi que lacompréhension des mécanismes permettant de limiter la diffusion des gaz au travers de cette structure.Dans un premier temps, le travail de thèse a été consacré à la réalisation d’une couche mince d’oxydede silicium sur substrat polymère à partir d’un précurseur inorganique : le perhydropolysilazane(PHPS). Différentes voies de conversion du précurseur ont été étudiées et comparées. Lesperméabilités à l’eau et à l’oxygène des meilleures couches déposées sur substrat polymère sont del’ordre de 0,1 g.m-2.j-1 et 0,1 cm3.m-2.j-1 respectivement. Ces valeurs sont comparables à cellesobtenues pour des dépôts réalisés par voie plasma.Des structures multicouches hybrides ont été réalisées en intercalant des couches de polymère entredes couches d’oxyde de silicium afin de décorréler les défauts des couches denses. Cela a permisd’atteindre des perméabilités inférieures ou égales à 10-2 g.m-2.j-1 à l’eau et de l’ordre de 10-3 cm3.m-2.j-1 à l’oxygène.Les performances au cours du temps sous irradiation de cellules solaires encapsulées ont étécomparées. L’encapsulation avec le meilleur matériau barrière développé confère une stabilitéremarquable aux cellules.Cette étude a ainsi permis de montrer les structures barrières élaborées par voie liquide constituent unealternative de choix pour l’encapsulation à grande échelle de cellules photovoltaïques. / Materials used in organic electronic devices or new generation photovoltaics undergo degradation byoxygen and water. In order to prevent their degradation, the devices should be encapsulated withmaterials showing a low permeability to oxygen and water vapor. For organic solar cellsencapsulation, material permeability to water (WVTR) and oxygen (OTR) should not exceed 10-3 g.m-2.d-1 and 10-3 cm3.m-2.d-1 respectively. The aim of this work is to study and develop a solutionprocessed,flexible, transparent and gas-barrier multilayer inorganic/organic hybrid structure, and tounderstand the mechanisms involved in diffusion limitation through these barriers.Firstly, this work has been dedicated to the realization on a polymer substrate of a thin silicon oxidelayer from an inorganic precursor: the perhydropolysilazane (PHPS). Different precursor conversionpaths have been studied and compared. The best barrier layers on polymer substrate have shownoxygen and water permeabilities of about 0,1 g.m-2.d-1 and 0,1 cm3.m-2.d-1 respectively. This result iscomparable to the permeability of plasma deposited layers.Multilayer hybrid structures have been realized by introducing a polymer layer between inorganiclayers in order to decorrelate the thin layer defects. This achieved permeabilities below 10-2 g.m-2.d-1for water and 10-3 cm3.m-2.d-1 for oxygen.The photovoltaic performances of encapsulated organic solar cells under illumination have beencompared over time. Encapsulation with the best barrier material developed during this work resultedin good device stability.This study has shown that entirely solution-processed barrier materials are a promising option for largescale organic solar cells encapsulation.
5

Využití plynové chromatografie ke studiu permeace toxických látek bariérovými materiály / The Study of Permeation of Toxic Compounds through Barrier Materials Using Gas Chromatography

Brtníková, Jana January 2009 (has links)
Transport phenomenon of gas and vapors through polymer barrier materials as well as the factors affecting permeability of gaseous and liquid toxic compounds were investigated and results are presented in this thesis. Permeation characteristics investigation methods were elaborated and verified with focusing on utilization of gas chromatographic method and its instrumental modifications.
6

Prediction of Plastic Fragments in Recycled Paper Using Near-Infrared Spectroscopy

Alieva, Fidan January 2023 (has links)
Sustainability has gained a lot of attention in the field of research. Researchers and consumers both prioritize sustainability and environmental issues over previously dominant materials, such as plastic. Packaging and disposable items that used to be made of plastic have largely been replaced with paper. Unfortunately, paper does not perform as well as plastic regarding barrier properties against grease, oxygen, or water vapor. Barrier properties are an important factor when choosing packaging material for food, among other things, as they help maintain the shelf life of the product. In order to improve the properties of the paper packaging and expand its use, the paper is coated with a polymer. However, the polymer contributes to challenges in the recycling of the products as some of the polymer attaches to the fibers, causing difficulties in the separation of each material. Small fragments of plastic may end up in the material streams and the recycled pulp due to the existing challenges in completely removing plastic from cellulosic substrates during recycling. This thesis analyzes the possibilities of identifying and classifying plastic fragments of polyethylene (PE) and polyvinyl alcohol (PVOH) in recycled paper sheets using near-infrared spectroscopy together with multivariate data analysis. The purpose of the work is to develop models that can identify possible residues that may appear in recycled products from various industries. Paper sheets of two different grammages and six different compositions of recycled fiber and virgin fiber were created and scanned by NIR, with and without plastic film under the sheets. The scans were used to develop classification models to identify and categorize scans not included in the calibration data set. The performance of the models was tested by applying them to images of sheets of paper with plastic fragments of different sizes and different type underneath. The results indicated potential in the method. The prediction of the paper sheets with a lower grammage was mostly correct, whereas the classification of polyethylene showed the best performance. There was some noise in the prediction of the plastic fragments, regardless of the grammage of the paper. The noise may be due to a wide variation in the calibration data set since it consisted of paper sheets of six different compositions. A large part of the noise was incorrectly classified as polyvinyl alcohol, which can be due to differences in the manufacturing process of the plastic films. The conclusion of the thesis is that it is feasible to identify and categorize plastic fragments of polyethylene and polyvinyl alcohol in recycled paper sheets with a certain margin of error. It can be stated that the method shows promise, but further research and development in the field is required to build models that can be applied to a wider range of samples.
7

Étude des aspects cinétiques et thermodynamiques gouvernant la perméabilité de modèles d’essence à l’interface de deux matériaux polymères barrières : application à l’optimisation de réservoirs pour carburants / Study of the kinetic and thermodynamic aspects controlling the permeability of gasoline models at the interface of two polymeric barrier materials : application to the optimization of fuel tanks

Zhao, Jing 14 December 2010 (has links)
Répondant à une forte demande de sécurité, d’économie de poids et d’optimisation du volume utile, les réservoirs pour carburants sont actuellement généralement constitués d’une paroi barrière polymère multicouche visant à limiter les émissions de vapeurs dans l’atmosphère. Etre capable de prédire les perméabilités est primordial pour l’optimisation de telles structures. Grâce à des automates conçus au laboratoire, les mesures de sorption et de perméabilité ont été réalisées pour trois polymères leaders du domaine (PEHD, Liant et EVOH) et des mélanges modèles de carburants composés d’éthanol, d’iso-octane et de toluène. Les propriétés de sorption ont été modélisées par UNIQUAC et un nouveau modèle inédit SORPFIT. Les paramètres des lois de diffusion, de type TSVF2 ou Long généralisé, ont aussi été optimisés pour chaque polymère malgré une difficulté particulière pour l’EVOH. Une méthodologie originale a été ensuite proposée pour la prédiction des flux partiels des multicouches à partir des paramètres caractéristiques des monocouches correspondantes. Selon la nature et la disposition de chaque couche, deux cas de figures ont été identifiés : la limitation cinétique et la limitation thermodynamique du transfert, cette dernière étant estimée à partir des modèles de sorption initialement optimisés. La confrontation des calculs avec les mesures expérimentales réalisées pour des films bicouches et tricouches d’Arkema montre des prédictions très satisfaisantes. Cette approche est finalement étendue à la simulation de la perméabilité de structures multicouches plus complexes et plus représentatives des réservoirs pour carburants industriels / Responding to a strong demand for security, weight reduction and volume optimization, the fuel tanks are currently usually made of polymer multi-layer barriers in order to limit vapour emissions into the atmosphere. The prediction of their permeability remains a world-wide critical challenge for the multi-layer optimization. Thanks to original semi-automated experimental set-ups, sorption and permeability measurements were carried out for three leading polymer materials (HDPE, EVOH and Binder) and model fuel mixtures of ethanol, iso-octane and toluene. The modelling of the sorption properties was successfully achieved by the UNIQUAC model and a new model called SORPFIT. The parameters of the diffusion laws according to the TSVF2 or the generalized Long models were also optimized for each polymer despite some difficulty with EVOH. An original methodology was then proposed for predicting the partial fluxes of polymer multi-layers from the characteristic parameters of the corresponding mono-layers. Depending on the nature and disposition of each layer, two scenarios were identified: the kinetics limitation and the thermodynamics limitation of mass transfer, the latter being estimated from the sorption models initially optimized. The comparison of the calculated fluxes with the experimental data obtained for bi-layer and tri-layer films provided by the world-wide industrial company Arkema showed that the predictions were very satisfying. This approach was then extended to the simulation of the permeability of more complex multi-layer structures which are more representative of commercial fuel tanks
8

Development of Hybrid Organic/Inorganic Composites as a Barrier Material for Organic Electronics

Gupta, Satyajit January 2013 (has links) (PDF)
The ultra high barrier films for packaging find applications in a wide variety of areas where moisture and oxygen barrier is required for improved shelf-life of food/beverage products and for microbial free pharmaceutical containers. These materials also find applications in micro electro mechanical systems such as ICs, and for packaging in industrial and space electronics. Flexible and portable organic electronics like OLEDs (Organic Light Emitting Diodes), OPVDs (Organic Photo Voltaic Devices) and dye sensitized solar cells (DSSCs) have a good potential in next generation solar powered devices. In fact, organic insulators, semiconductors, and metals may be a large part of the future of electronics. However, these classes of materials are just an emerging class of materials mainly because of their life time constraints. Thus significant research is required to bring them into the forefront of electronic applications. If the degradation problems can be diminished, then these polymers could play a major role in the worldwide electronic industry. A flexible polymer film itself cannot be used as an encapsulation material owing to its high permeability. While a glass or metal substrate possesses ultra high barrier properties, it cannot be used in many electronic applications due to its brittleness and inflexibility. Polymer/ nanocomposites based hybrid materials are thus a promising class of material that can be used for device encapsulation. Chapter I summarizes some of the recent developments in the polymer/nanocomposites based materials for packaging and specifically its use in flexible as well as portable organic electronic device encapsulation. While the development of low permeable encapsulant materials is a chemistry problem, an engineering/instrumentation problem is the development of an accurate technique that can measure the low levels of permeability required for electronic application. Therefore, there is a keen interest in the development of an instrument to measure permeability at these limits. The existing techniques to measure the low permeabilities of barrier films, their importance and accuracy of measurements obtained by these instruments have been briefly discussed in this chapter. Different polymer based hybrid composite materials have been developed for the encapsulation of organic devices and their materials properties have been evaluated. Broadly, two diverse strategies have been used for the fabrication of the composites: in-situ curing and solution casting. Chapters II, III and IV discuss the fabrication of nanocomposite films based on in-situ curing while chapter V discusses fabrication based on solution casting. In chapter II, amine functionalized alumina was used as a cross-linking agent and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric and CHN analysis were used to quantify the grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer (DMA). It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The work presented in chapter III is a technique based on grafting between surface decorated γ-alumina nanoparticles and the polymer to make these nanocomposites. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride terminated polydimethylsiloxane) through platinum catalyzed hydrosilylation reaction. As in the previous chapter, the surface chemistry of the nanoparticles after surface modification was characterized by different techniques (FTIR, XPS and Raman). The grafting density of alkene groups over the surface of the modified nanoparticles was calculated using CHN analyzer. Thermal stability of the composites was also evaluated using thermogravimetric analysis. Nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using density gradient column and the morphology of composites was evaluated using SEM. All these studies reveal that the composites have good thermal stability and mechanical flexibility and thus can be potentially used for encapsulation of organic photovoltaic devices. In addition, rheological studies of the composites were carried out to investigate the curing reaction. The platinum-catalyzed hydrosilylation reaction was studied using both DSC and rheological measurements. The competitive reactions occurring in the system was also monitored in real time through DSC and rheology. Based on the curing curves obtained from these two studies, the mechanistic detail of the curing process was proposed. In addition, swelling studies and contact angle measurements of the composites were also carried out to determine the capability of these materials as encapsulants. Chapter IV deals with a thermally stable and flexible composite that has been synthesized by following a hydrosilylation coupling between silicone polymer containing internal hydrides and mesoporous silica. The results of the characterization of the composites indicates that the composites are thermally stable, hydrophobic, flexible and can be potentially used for encapsulating flexible electronic devices. Chapter V discusses the solution casting method for the development of composites. This chapter is divided into two parts: Part I discusses the synthesis and characterization of flexible and thermally stable composites using polyvinyl alcohol as the base polymer matrix and reactive zinc oxide nanoparticles as the dispersed phase. Various studies like thermal analysis, mechanical analysis, surface analysis and permeability studies were used to characterize the composite films for their possible use as a passivation material. The material was used to encapsulate Schottky structured devices and the performance of these encapsulated devices under accelerated weathering was studied. Part II of this chapter discusses the fabrication of hybrid organic/inorganic based polymer-composite films, based on polyvinylbutyral (PVB) and organically modified mesoporous silica. PVB and amine functionalized mesoporous silica were used to synthesize the composite. An additional polyol (‘tripentaerythritol’) component was also used to enhance the –OH group content in the composite matrix. The thermal, barrier and mechanical properties of these composites were investigated. The investigation of these films suggests that these can be used as a moisture barrier layer for encapsulation. Chapter VI gives the concluding remarks of the results presented. The advantages as well as disadvantages of the in-situ cured and solution casted films and the scope for future work is discussed in this chapter.

Page generated in 0.0743 seconds