• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sphalerons in two Higgs doublet electroweak models

Grant, Jackie January 2001 (has links)
No description available.
2

Dark and Light: Unifying the Origins of Dark and Visible Matter

Shuve, Brian 23 July 2012 (has links)
The Standard Model of particle physics can account for neither the dark matter dominating the universe's matter density, nor the baryon asymmetry that leads to the visible matter density. This dissertation explores models of new physics that connect dark matter to baryogenesis and can naturally account for the observed quantities of both types of matter. Special emphasis is given to models incorporating new weak-scale physics, as such models often predict signatures at present and upcoming experiments and can potentially be connected to solutions of the hierarchy problem. In one class of models we study, the dark matter abundance is determined by a dark matter asymmetry connected to the baryon asymmetry. In such models, the separate dark matter, baryon, and lepton number global symmetries observed today are individually broken at or above the weak scale and lead to mixing of dark matter and Standard Model fields in the early universe. This can happen generically, with dark matter-visible matter mass mixing induced by large background energies or moduli in the early universe, and can also arise at the electroweak phase transition. Mass mixing models of asymmetric dark matter can readily accommodate dark matter masses ranging from 1 GeV to 100 TeV and expand the scope of possible relationships between the dark and visible sectors. We also consider models of symmetric dark matter in which the annihilation of dark matter particles in the early universe generates the observed baryon asymmetry. This process, called “WIMPy baryogenesis”, naturally accommodates weak-scale dark matter and explains the observed dark matter density with only order-one couplings. WIMPy baryogenesis is a new model of baryogenesis at the weak scale, avoiding problems with high reheat temperatures in supersymmetric theories, and yielding observable consequences in ongoing and future experiments for some models / Physics
3

Searches for new physics in violation of strong CP symmetry and lepton universality with the LHCb experiment

Capriotti, Lorenzo January 2018 (has links)
No description available.
4

Expansion after inflation and reheating with a charged inflaton

Lozanov, Kaloian Dimitrov January 2017 (has links)
Within the inflationary paradigm, our patch of the universe near the end of inflation is highly homogeneous and isotropic as necessitated by cosmic microwave background observations. This patch, however, is also in a cold and non-thermal state. A successful model of an inflationary primordial universe should account for how the universe transitioned from an inflationary to a radiation-dominated, hot, thermal phase required for the production of light elements via big-bang nucleosynthesis. It is desirable for such a model also to include a mechanism for the generation of the observed matter-antimatter asymmetry and perhaps a primordial mechanism for the generation of cosmic magnetic fields. The transition from an inflationary to a radiation-dominated, thermal phase (reheating) is likely to be phenomenologically rich. Reheating could include explosive particle production and various other non-perturbative, non-linear and non-equilibrium phenomena. Reheating can leave its own observational signatures in the form of gravitational waves and non-Gaussianities. Importantly, reheating can also affect the observational predictions of the preceding phase of inflation. Reheating remains an active field of research, with significant gaps in our understanding of the process. This thesis is an attempt to improve our understanding of the period following inflation, including reheating, through an exploration and analysis of realistic post-inflationary models with the aid of detailed numerical simulations. The focus of the studies is on aspects of the models with potential observational implications. In Part I of this thesis, we provide an overview of inflation and its end, concentrating on our current understanding of reheating and the challenges we face in trying to constrain reheating observationally. In Part II, we consider the post-inflationary expansion history in a broad class of observationally-favoured single-field models of inflation. Generally, the ambiguity in the expansion history of reheating can cause significant uncertainty in predictions for inflationary observables such as the spectral index, n_s, and the tensor-to-scalar ratio, r. The work in this part considers the full non-linear evolution of the inflaton during the initial stages of reheating and places bounds on the post-inflationary expansion history when perturbative couplings of the inflaton to other relativistic fields are included. In Part III, we investigate non-perturbative particle production and non-linear dynamics after inflation in models where the inflaton is charged under global/local symmetries. We first explore the effects of the non-linear inflaton dynamics for the generation of matter-antimatter asymmetry in the case where a global U(1) symmetry of the inflaton is weakly broken. We find a parameter range in which the model successfully predicts the observed baryon-to-photon ratio. We then consider the particle production during and after inflation in models with a charged inflaton under Abelian, U(1), and non-Abelian, SU(2) and U(1) x SU(2), gauge symmetries. Finally, we present a novel algorithm for evolving the full set of coupled, non-linear equations describing the U(1) charged inflaton and accompanying gauge fields on a lattice in an expanding universe. The novel feature here is that the gauge constraints are satisfied to machine precision when the gravitational dynamics are self-consistently included at the background level, and there are no restrictions on the order of the time-integrators.
5

On connections between dark matter and the baryon asymmetry

Unwin, James January 2013 (has links)
This thesis is dedicated to the study of a prominent class of dark matter (DM) models, in which the DM relic density is linked to the baryon asymmetry, often referred to as Asymmetric Dark Matter (ADM) theories. In ADM the relic density is set by a particle-antiparticle asymmetry, in direct analogue to the baryons. This is partly motivated by the observed proximity of the baryon and DM relic densities Ω_{DM} ≈ 5 Ω_{B}, as this can be explained if the DM and baryon asymmetries are linked. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density, the DM-antiDM pairs, must be removed for the asymmetry to set the DM relic density and thus to explain the coincidence of Ω_{DM} and Ω_{B}. However we shall argue that demanding the efficient annihilation of the symmetric component leads to a tension with experimental constraints in a large class of models. In order to satisfy the limits coming from direct detection and colliders searches, it is almost certainly required that the DM be part of a richer hidden sector of interacting states. Subsequently, examples of such extended hidden sectors are constructed and studied, in particular we highlight that the presence of light pseudoscalars can greatly aid in alleviating the experimental bounds and are well motivated from a theoretical stance. Finally, we highlight that self-conjugate DM can be generated from hidden sector particle asymmetries, which can lead to distinct phenomenology. Further, this variant on the ADM scenario can circumvent some of the leading constraints.
6

Etudes phénoménologiques au-delà du Modèle Standard

Servant, Géraldine 01 June 2001 (has links) (PDF)
Le Modèle Standard de la physique des particules a été remarquablement testé auprès des grands accélérateurs jusqu'à une énergie de l'ordre du TeV. Malgré ses succès, un grand nombre de problèmes restent sans solution. Par exemple, le Modèle Standard ne permet pas d'expliquer l'origine de la prépondérance de la matière sur l'antimatière, ni l'origine du rapport 1016 entre l'échelle de brisure électrofaible et l'échelle de Planck. Les interactions électrofaibles et fortes ne sont pas unifiées et de plus, la gravité est absente. Cette thèse s'interesse à différents aspects phénoménologiques des théories d'extension du Modèle Standard. La première partie porte sur la baryogénèse électro- faible dans le Modèle Standard Supersymétrique Minimal et plus spécifiquement sur la dynamique de la transition de phase électrofaible. La deuxième partie est consacrée au problème de la brisure spontanée de la supergravité dans les théories de cordes effectives, les seules théories offrant l'espoir d'une description unifiée des interactions gravitationnelles avec les autres forces fondamentales. Enfin, la dernière partie discute un certain nombre de modèles phénoménologiques utilisant les propriétés des branes et la présence de dimensions supplémentaires afin de reformuler le problème de hiérarchie de jauge en termes géométriques.
7

Mesure du moment dipolaire électrique du neutron : analyse de données et développement autour du ¹⁹⁹Hg / Neutron electric dipole moment search : data analysis and development around the ¹⁹⁹Hg

Kermaidic, Yoann 07 October 2016 (has links)
Un moment dipolaire électrique permanent (EDM) est une propriété fondamentale des systèmes simples comme par exemple l'électron, les atomes/molécules ou le neutron dont l'existence est prédite par le Modèle Standard de la physique des particules (MS) mais qui n'a pas pour l'heure jamais été observée. Cette observable violant la symétrie CP offre la possibilité de relier la physique des particules à l'énigme cosmologique fondamentale de l'asymétrie baryonique de l'Univers observée de nos jours. Produire une telle asymétrie requiert de nouvelles sources/de nouveaux mécanismes de violation de CP, hors MS, qui peuvent être sondés de façon privilégiée par les recherches d'EDM. La sensibilité des expériences EDM actuelles se trouve des ordres de grandeurs au-dessus des prédictions du secteur faible du MS. L'absence de signal, après 60 ans de quête, détermine la limite supérieure la plus forte sur la violation de CP dans le secteur fort du MS et contraint l'espace des phases des modèles de nouvelle physique. A contrario, la mesure d'un EDM non nul dans les années à venir pourra s'interpréter comme le signal d'une physique au-delà du MS évoluant à l'échelle multi-TeV. Dans cette perspective envoûtante, de nombreux nouveaux projets de mesures des EDM ont vu le jour ces dernières années et d'importants efforts sont poursuivis auprès du neutron notamment. Ce manuscrit présente la recherche de l'EDM du neutron menée auprès de l'expérience la plus sensible à ce jour basée à l'Institut Paul Scherrer en Suisse. / A permanent electric dipole moment (EDM) is a fundamental property of simple systems such as the electron, atoms/molecules or the neutron whose amplitude is expected to be non-zero within the Standard Model of particles physics (SM) but which has never been observed so far. This observable violating the CP symmetry offers the opportunity to link particle physics to the fundamental cosmological enigma of the observed baryon asymmetry of the Universe. Such an asymmetry requires new CP violation sources/mechanism beyond the SM, which can be best probed by EDM searches. The current EDM experiments sensitivity is order of magnitude above the weak SM sector predictions. Measuring a null EDM, after a 60 years quest, set the strongest upper limit on the CP violation in the strong SM sector and constrains the new physics models phase space. On the contrary, measuring a non-zero EDM in the coming years can be understood as a signal from physics beyond the SM evolving at a multi-TeV scale. In this haunting perspective, many new EDM projects raised in the last years and important efforts are pursued near the neutron in particular. This manuscript present the neutron EDM search near the most sensitive experiment running at the Paul Scherrer Institute in Switzerland.
8

Investigando a influência do setor leptônico em mecanismos de bariogênese / Investigating the lepton sector influence on baryogenesis mechanisms

Sato, Eduardo Akio, 1991- 09 September 2016 (has links)
Orientador: Pedro Cunha de Holanda / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T06:55:32Z (GMT). No. of bitstreams: 1 Sato_EduardoAkio_M.pdf: 2319995 bytes, checksum: fc82384c799d5812bf14a71fe2723e2d (MD5) Previous issue date: 2016 / Resumo: Nesta dissertação analiso como uma classe de modelos sugeridos para acomodar neutrinos massivos no modelo padrão, os assim chamados mecanismos seesaw, podem também resolver o problema de assimetria bariônica no universo. Os requisitos mínimos para uma geração dinâmica bem sucedida de assimetria bariônica, conhecidos como condições de Sakharov, são: não conservação de número bariônico, violação de simetria CP e ausência de equilíbrio térmico. Para mostrar que mecanismos seesaw respeitam estas regras, reviso alguns tópicos como: a violação de número bariônico através do processo de sphalerons, a teoria de violação de CP através de invariantes de base fraca e a mecânica estatística de não equilíbrio através da equação de Boltzmann. Como exemplo considero um cenário de mecanismo seesaw tipo I (3+3) com massas de neutrinos estéreis altamente hierárquicas. A assimetria observada impõe um limite inferior na massa dos neutrinos estéreis ($M_1 \geq 8.4 \times 10^{8} \; \text{GeV}$) e um limite superior na massa dos neutrinos ativos ($m_1 < 0.11 \; \text{eV}$), consistente com limites previamente obtidos na literatura / Abstract: In this dissertation I analyse how a class of models suggested to accommodate massive neutrinos in the standard model, the so-called seesaw mechanisms, can also solve the baryon asymmetry of the universe problem. The minimal requisites to a successful dynamical generation of baryon asymmetry, known as Sakharov's conditions, are: Non-conservation of baryon number, violation of CP symmetry and absence of thermal equilibrium. To show that seesaw mechanisms respect those rules, I review some topics such as: the standard model baryon non-conservation via sphalerons process, the theory of CP violation via weak-basis invariants and non-equilibrium statistical physics via Boltzmann equation. As a example I consider a type I (3+3) seesaw mechanism scenario with highly hierarchical sterile neutrino masses and the observed asymmetry impose a lower bound in the sterile neutrino masses ($M_1 \geq 8.4 \times 10^{8} \; \text{GeV}$) and a upper bound in the active neutrino masses ($m_1 < 0.11 \; \text{eV}$), consistent with limits previously obtained in the literature / Mestrado / Física / Mestre em Física / 1370441/2014 / CAPES
9

Implication of Sterile Fermions in Particle Physics and Cosmology / Implications des fermions stériles dans la physique des particules et dans la cosmologie

Lucente, Michele 25 September 2015 (has links)
Le mécanisme de génération de masses des neutrinos, la nature de la matière noire et l’origine de l’asymétrie baryonique de l’Univers sont les trois questions les plus pressantes dans la physique moderne des astroparticules, qui exigent l’introduction d’une nouvelle physique au-delà du Modèle Standard. Dans cette thèse, nous nous concentrons sur ces trois questions en fournissant une solution possible en termes d'une extension minimale du Modèle Standard, constituée par l’ajout d'un ensemble de fermions stériles au contenu des champs de la théorie. Les fermions stériles sont des champs qui sont singlets de jauge et qui peuvent interagir avec les neutrinos actifs à travers des termes de mélange. Nous nous concentrons sur le mécanisme dit de l’Inverse Seesaw (ISS), qui est caractérisé par une faible échelle de la nouvelle physique (de l’ordre TeV ou inférieure) et qui peut être testé dans les installations expérimentales actuelles et futures.
Nous présentons l'analyse qui permet d’identifier les réalisations minimales de ce mécanisme et l'étude phénoménologique pour prendre en compte la masses des neutrinos légers et pour imposer toutes les contraintes expérimentales pertinentes au modèle, ainsi que les signatures expérimentales attendues. Nous montrons la viabilité de l’hypothèse que les neutrinos stériles constituent la matière noire, et les caractéristiques de cette solution dans le mécanisme minimale de l’ISS. La possibilité d’expliquer avec succès l'asymétrie baryonique à travers un processus de leptogenèse dans une réalisation testable du mécanisme est aussi adressée.
Il est important de chercher des manifestations des fermions stériles dans les expériences de laboratoire. Nous abordons ce point en faisant des prévisions sur les rapports des branchement attendus pour les désintégrations des bosons vectoriels qui violent le saveur leptonique, qui peuvent être véhiculés par les fermions stériles. Nous étudions aussi l'impact des fermions stériles sur les fits globaux des données de précision électrofaible. / The neutrino mass generation mechanism, the nature of dark matter and the origin of the baryon asymmetry of the Universe are three compelling questions that cannot be accounted for in the Standard Model of particle physics. In this thesis we focus on all these issues by providing a possible solution in terms of a minimal extension of the Standard Model, consisting in the addition of a set of sterile fermions to the field content of the theory. Sterile fermions are gauge singlet fields, that can interact via mixing with the active neutrinos. We focus on the Inverse Seesaw mechanism, which is characterised by a low (TeV or lower) new physics scale and that can be tested in current and future experimental facilities. We present the model building analysis that points towards the minimal realisations of the mechanism, and the phenomenological study in order to accommodate light neutrino masses and to impose all the relevant experimental constraints in the model, as well as the expected experimental signatures. We show the viability of the sterile neutrino hypothesis as dark matter component, together with the characteristic features of this scenario in the minimal Inverse Seesaw mechanism. The possibility of successfully accounting for the baryon asymmetry in a testable realisation of the leptogenesis mechanism is also addressed.On the other side it is important to look for manifestations of sterile fermions in laboratory experiments. We address this point by making predictions for the expected rates of rare lepton number violating decays of vector bosons, that can be mediated by sterile fermions, as well as by studying the impact of sterile fermions on global fit of electroweak precision data.

Page generated in 0.0536 seconds